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ABSTRACT

The paper addresses the problem of predicting soil organic matter content in an agricultural field using
information collected by a low-cost network of mobile, wireless and noisy sensors that can take discrete
measurements in the environment. In this context, it is proposed that the spatial phenomenon of organic matter in soil
to be monitored is modeled using Gaussian processes. The proposed model then enables the wireless sensor
network to estimate the soil organic matter at all unobserved locations of interest. The estimated values at predicted
locations are highly comparable to those at corresponding points on a realistic image that is aerially taken by a very
expensive and complex remote sensing system.
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DPanh gia chat hiru co trong dat sir dung mang cam bién khong day
TOM TAT

Bai bao trinh bay van dé& danh gia thanh phan chét hivu co trong dat s&v dung di liéu dwoc thu thap béi mang
cadm bién khong day. Trong nghién ctu nay, ching toi dé xuat mé ta suw phan phdi cac thanh phan hiu co trong dat
str dung cac qua trinh Gauss. Dya trén md hinh dé xuét, mang cdm bién khong day cé thé dwoc (rng dung dé danh
gia thanh phan chét hiru co trong dét tai cac vi tri khéng dwoc quan trdc dwa trén di liéu thu thap dwoc. Thanh phan
chét hivu co trong d4t dwoc danh gia béi mang cdm bién khong day tai cac vi tri nghién clru c6 gia tri kha chinh xac
so v&i cac gia tri dat dworc tir cac vé tinh phirc tap va co gia thanh cao.

T khoa: Dw doan hién twong trong khong gian, qua trinh Gauss, chét hivu co trong dat, mang cam bién khong day.

potential for groundwater pollution (Schepers,

1. INTRODUCTION

2002). Therefore, one of principal problems in

In agriculture production, precision farming
is an emerging methodology that collects and
processes intensive data and information on soil
and crop conditions to make more efficient use
of farm inputs such as fertilizers, herbicides,
This

productivity and

and pesticides. leads to not only

maximizing crop farm
profitability but also minimizing environmental
contamination (Harmon et al., 2005). Since cost
of nitrogen fertilizer is relatively low and a
small input can increase crop yields, many
farmers tend to uniformly apply a large amount

of nitrogen fertilizer to fields, resulting in

precision agriculture is how to manage the

nitrogen, which can also be supplied by
mineralization of soil organic matter (SOM). In
other words, there is a requirement to fully
understand organic matter content and its
spatial distribution in soil so that we can
proportionally apply nitrogen fertilizer to the
need in portions of the field, reducing over-

application of the nitrogen fertilizer.

One of the most often utilized techniques to
observe the soil organic matter content is
remote sensing, which gathers information

about a phenomenon without making any
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physical contacts with it. There are two types of
sensors in remote sensing systems, passive and
active. In monitoring soil and crop conditions,
remote sensing is basically conducted from
aerial and satellite platforms (Johannsen and
Barney, 1981), and observed phenomena are
represented by remotely sensed images
1959).

images allows us to obtain spatial and spectral

(Goodman, Analyzing the observed

variations resulting from soil and crop
characteristics. In the context of soil properties,
SOM content can frequently been estimated
from soil reflectance measurements by
examining quantitative relationships between
remotely sensed data and soil characteristics,
focused on the reflective region of the spectrum
(0.3 to 2.8 um), with

established from data in the thermal and

some relationships
microwave regions (Chen et al., 2000). Recently,
the work conducted by Bajwa and Tian (2005)
demonstrated  the  potential of aerial
visible/infrared (VIR) hyperspectral imagery for
determining the SOM content, providing high

spatial and spectral resolution.

Although remote sensing is considered as a
promising approach to study organic matter
content and its variability in soil, there still
have several burdens that impede the adoption
of this geographical technique for the nitrogen
management. For instance, SOM content can be
efficiently inferred from reflectance
measurements if observations are obtained in
areas with moderate to high SOM levels, e.g. 10
to 15 grs per kg (Sullivan et al., 2005) but not
for low SOM levels since other soil factors may
considerably affect the reflectance. Moreover,
the reflectance based method is not really
effective over the large geographic areas owing
to confounding impacts of nature such as
moisture and underlying parent material
(Hummel et al., 2001), extensive plant canopy
over a region (Kongapai, 2007) and variations in
surface roughness (Matthias et al., 2000) and
vegetation (Walker et al, 2004). Accuracy of
estimating SOM content is questionable where
surface features confuse spectral responses
et al, 2001). And cloud

(Hummel cover
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conditions probably influence the quality of
remotely sensed color photographs (Nellis et al.,
2009). On the other hand, when considering
small areas, the imagery is required to be of
high spatial resolution. Such aerial or satellite
unavailable or fairly
2006). More
importantly, processing that high resolution

images are either

expensive (Bannari et al,
imagery faces computational complexity, which
really frustrates many farmers.

Recently, technological developments in
micro-electro-mechanical systems and wireless
communications, which involve the substantial
evolution in reducing the size and the cost of
components, have led to the emergence of
wireless sensor networks (WSN) that are
increasingly useful in crucial applications in
environmental monitoring (Akyildiz et al,
2002). WSN can be employed to enhance our
understanding of environmental phenomena
and direct natural resource management. In
agriculture, networks of wireless sensors are
very appealing and promising for supporting
agriculture practices (Ruiz-Garcia et al., 2009).
For instance, wireless sensor nodes are
deployed in greenhouses and gardens (Kim et
al., 2011) to gauge information of environmental
parameters such as temperature, relative
humidity and light intensity that significantly
influence the development of the agricultural
crops. Based on measurements gathered by the
large-scale WSN, Langendoen et al. (2006)
designed an optimal control system that can be
utilized to adjust environmental quantities for
the purpose of obtaining better production
yields and minimizing use of resources.
Furthermore, the WSN have been used to track
animals. Butler et al. (2004). proposed a moving
virtual fence method to control cow herd, based
on a wireless system. To respond requirements
to constantly monitor the conditions of
individual animals, a WSN based system is
designed to generally monitor animal health
and locate any animals that are sick and can
infect the others (Davcev and Gomez, 2009). In
the context of soil science, a farm based network

of wireless sensors has been developed to assess



soil moisture and soil temperature as
demonstrated in Sikka et al. (2006).

In fact, not only do these systems provide a
virtual connection with the physical field in
general, the WSN can be utilized for developing
optimal strategies for crop production. In
(Hokozono and Hayashi, 2012), Hokozono et al.
have employed the sensed data to study
variability of environmental effects, which then
influence the conversion from conventional to
organic and sustainable crop production.
Furthermore, real time information from the
fields gathered by the WSN is really helpful for
farmers to minimize potential risks in crop
production by controlling their production
strategies at any time, without using a tractor
or any other vehicles to collect each sampling
point (Wu et al., 2013). More specifically, in
addition to collecting the data, combining the
measurements with a model, a wireless sensor
network is also competent to estimate and
predict the spatial phenomenon at unobserved
locations. This interesting attribute enables the
WSN to surface by

employing the set of measurements collected at

create a continuous
discrete points to interpolate the physical field
at unobserved locations. The more number of
predicted points is, the more accurate the
predictions of the resulting surface are as
compared with the remotely sensed image.

In order to enhance the accuracy of the
predicted field, it is essential to efficiently
model the spatial phenomena. Usually, the
described by
deterministic and data-driven models (Graham

physical  processes  are
and Cortes, 2010). The prime disadvantage of
the deterministic model is that it requires
model parameters and initial conditions to be
known in advance. Furthermore, model
complexity and various interactions in the
deterministic models that are difficult to model
tilt the balance

approaches. In this work, it is particularly

in favor of data-driven
proposed to consider the Gaussian process data-
driven model (Cressie, 1991, Rasmussen and
Williams, 2006, Diggle and Ribeiro, 2007) to
statistically model spatial fields. The use of a
Gaussian process (GP) allows prediction of the
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environmental phenomena of interest effectively
at any unobserved point.

Upon analysis above, it can be clearly seen
that the use of remote sensing technique to
monitor and estimate SOM content is costly,
complicated and particularly impractical in
areas with significant vegetation and litter
cover. As a consequence, in this work we
proposed to utilize the low-cost WSN to
take SOM
predefined locations and then use the GP to
statistically predict the SOM field at the rest of
space from the observations available. The

discretely measurements at

proposed approach was evaluated by the use of
published dataset gathered by the remote
sensing equipments. The resulting prediction
surfaces of the SOM content at studied areas
were highly comparable to the imagery obtained

by the aerial or satellite platforms.

The structure of the paper is arranged as
follows. Section 2 introduces wireless sensor
networks for monitoring the SOM content and
dataset that is used to conduct the experiments.
The spatial field model and the interpolation
technique are also presented in this section.
Section 3 describes the experiments and
discussion about the results before conclusions
are delineated in Section 4.

2. MATERIALS AND METHODS

In this section, we first presented structure of
a wireless sensor network and a data set. We then
discuss about the spatial prediction approach
utilized in this work. For simplicity, we define
notations as follows. Let R and R > 0 denote the
set of real and nonnegative real numbers. The
Euclidean distance function is defined by”” Let
E denote the operator of the expectation and
tr(-) denote trace of a matrix. Other notations

will be explained when they occur.

2.1. Wireless Sensor Network and Dataset

2.1.1. Wireless Sensor Network

A wireless sensor network is specifically
composed of multiple autonomous, small size,
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low cost, low power and multifunctional sensor
nodes. Each node can communicate untethered
in short distances. These tiny sensor nodes
could be equipped with various types of sensing
devices such as temperature, humidity,
chemical, thermal, acoustic, optical sensors.
Therefore, by positioning the individual sensors
inside or very close to the phenomenon, the
sensor nodes not only measure it but also
transmit the data to the central node that is
also known as the base station or the sink. A
unique feature of sensor nodes is that each is
embedded with an on-board processor. In
addition to controlling all activities on the
board, the processor is responsible for locally
conducting simple pre-computation of the raw
measurements before sending the required or
partially processed data to the sink. The pre-
aims to enhance the

processing energy

conservation and reduce communicating time.

Gateway

(ipi]l
__ xé

i
-
:

%

By carefully engineering the communication
topology, a sensor node can communicate others or
a base station based on a routing structure. The
wireless communication technology widely utilized
in sensor networks is the ZigBee standard. ZigBee
is a suite of high-level communication protocols
that uses small, low-power digital radios based on
the TEEE 802.15.4 standard for wireless area
networks (Kuorilehto et al.,, 2007). In a small-scale
network, each node directly transmits its data to
the sink, which is called single hop communication.
Nevertheless, the single hop transmission is
inefficient in a large-scale network, where
transmission energy expense is exponential of a
Hence, the

communication in which the data is transmitted to

transmitting distance. multihop

sensor nodes' neighbors in multiple times before
reaching the sink is practically feasible. Typical
multihop wireless sensor network architecture is
demonstrated in Fig. 1.

5 B

Cluster C

[

7

E Working node
T Cluster-head node

Figure 1. Wireless sensor network structure
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On the other hand, Fig. 1 also illustrates
another efficient solution for communication
in a large-scale network. In  this
configuration, the network is organized by
clusters; and each cluster-head node
aggregates data from all the sensors within

its cluster and transmits to the sink.

After gathering measurements from all

sensor nodes, the base station performs
computations and fuses the data before making

decision about the phenomenon.

2.1.2. Dataset

In order to illustrate the efficiency of our
proposed approach as compared with the remote
sensing technique, we conducted experiments
using published data sets that were collected
from a real-world field in Benton county,
Indiana, USA (Mulla et al., 2001). In the work
(Mulla et al, 2001), a hyper-intensive aerial
photograph of the field taken by a digital camera
from an airplane flying at a height of 1219 m.
After analyzing the raw data, imaginary of soil
organic matter contents calculated in percentage
were created. For the purpose of comparisons, in
this work, we suppose that sensors can take the
soil organic matter content measurements at
locations on imaginary maps published in (Mulla
et al., 2001).

2.2, Spatial Field Model

In this section, we introduce the dominant
concepts and properties on the spatial field
model that are used in this paper. We refer the
interested readers to (Diggle and Ribeiro, 2007)
for further details.

Consider the spatial field of interest

QCRd, we let spatial locations within )
T .T T.T dn

R™". The
[ Vg eY, ) €

data consists of one measurement taken at each

denote as v=(v

observed location in y. Let a random vector
y(v) denoted by

Y0 = 00, )y D' e R”

describe a vector of measurements. In this
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study, it is supposed that Vl-, i=1,...,n varies

continuously through (). The spatial field

model is a summation of a large scale

component, a random field and a noise. The
noise 1is supposed to be independent and
identically distributed (i.i.d.). Hence, the model
is defined by

yv =X )B+E0,)+e() (1)

where
. X(vi)'B is the expectation of y(vl.),

which is also referred to as a spatial trend
function;

o é(Vl.) - N(O’COV(Vi’Vj ) is a Gaussian

process that will be presented in the following;

. S(Vl.) is a noise with a zero mean and

an unknown variance T
The expectation of y(vl.) in the model (1) is

frequently derived through a polynomial
regression model, for example a constant, first,
or second order polynomial function. Here,

X (Vl.) is given by

X(v)= (l,Xl(vl,),...,Xp_ ()e RP7

a

spatially referenced non-random variable

(known as covariate) at location Vl.. And
_ T

B= (ﬁO’ﬂl r-'aﬁp _1) 1s an unknown vector

of mean parameters. For instance, it is assumed

that V. eRz, thatis V. =(v..,V.,), the second
i i i1’ i2

order polynomial expectation is dependent on
the coordinates of a sensing location, specified
by

_ 2 .2
XOIB=Py+ By + Byt BV By Py @)

In this case,
~ 2 2
XOD =y oV Vi Vin Vi Vin) and

— T
ﬁ _(ﬂ09ﬁ19ﬂ27ﬁ3’ﬂ47ﬂ5) .
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Gaussian process: A Gaussian process
(GP) is a very popular non-parametric Bayesian
technique for modeling spatially correlated
data. Initially known as kriging, the technique
has its roots in geostatistics where it is mainly
used for
(Matheron,
(GPs)
distributions over a finite vector space to

estimation of mineral resources
1973). The
extend

Gaussian processes

multivariate Gaussian

function space of infinite dimensionality.
. . . d
Consider a spatial location Vl. eR” a

random variable Z (Vl.) at VZ. is modeled as a GP

and written as

20v) =~ GP(u(v.eovvv ) g

where v_,v . € Rd are the inputs. ,Ll(Vl.) is
rJ
a mean function and cov(v.,v. ) is a
L

covariance function, often called a kernel

function. These functions are defined as

uWQ=EH3J

cov@l_,vj) = E{(z(vl,) —#(vi))(Z(vj)—ﬂ(vj))}

A spatial GP is  stationary @ if
cov(v.,v.)=cov(v,—v ). That is, the
L Lo

covariance depends only on the vector difference

between V. and Y.
i J

cov(vl. ,vj) = cov(

process is

Furthermore, if

vl_ —vj j, the stationary

isotropic. Hence, the covariance

between a pair of variables of Z(Vl.) at any two

locations is only dependent on the distance
between them.

The covariance function is a vital ingredient
in a GP. In fact, there is a practical family of
parametric covariance functions proposed in
(Chiles and Delfiner, 1999). For example, one of
the frequently used kernel functions is squared
exponential, that is,
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Vi -V,
cov(v.,v _)=626Xp - / (4)
i J ) ¢2
where
e O  is the marginal variance (also

known as the maximum allowable covariance);

o ¢ is the range parameter (also called
the length scale) that is referred to as the

reduction rate of the correlation between Z(Vl.)

increases.

and z(v .) when ||[V. =V .
J Lo
2.3. Spatial Inference

After introducing the spatial field model,
we now delineate the regression technique,

which 1s utilized to predict continuous
quantities of the physical process.

Consider a data set of n observations
D={(vl.,yl.)|i=1,...,n} collected by the

wireless sensor network, where Vl. is a location

vector of dimension d and yl. is a scalar value

of noise corrupted output. The corresponding
vector of noise-free observations is referred to

as z:(z(vl),z(vz),...,z(vn))T eR".  As

discussed in Section 2.2, the prior z can be
described as

z~N(wX ) )

where e R™ is the mean vector obtained
b .=y, d i
y ,UZ ,U(Z), an ZZZ Is an puxn

covariance matrix whose elements can be

computed by ZZZ[i,j]ZCOV(vl,,vj). By the

use of the spatial field model presented in (1),

the mean value at each Vl. can be obtained by

H=X()B



The advantage of the GP formulation is
that the combination of the prior and noise can
be implemented exactly by matrix operations
(Williams and Rasmussen, 1996). Therefore,

the noisy observations can be normally
distributed as
2
y~N(z,t°1) (6)

where 1-2 1s a noise variance and I is an
nxn identity matrix. Note that the GP models

and all formulas are always conditional on the
corresponding locations. In the following, the
explicit conditioning on the matrix v will always
be neglected.

Given the observations, the objective of

probabilistic regression is to compute the

prediction of the real values Z, ZZ(V*) at m

interested points V,. In (Rasmussen and

Williams, 2006), Rasmussen et al. demonstrated
that the GP has a marginalization property,
which implies that the joint distribution on

random variables at y and V, is Gaussian,

specified by

S 4221 Y
zZ ZZ

%

y Xmp

I RCCAVH N> O
ES

Zax
where X(v) and X(v,) are nxp and

m x p matrices of covariates, respectively. Then

X(v)p and X(V*),B are the mean vectors of y

and Z,. >

is the covariance matrix of Z, .
Zy 7y

is the cross-covariance matrix
* %

between y and Z, .

In probabilistic terms, the conditional

distribution at predicted positions of V, given y

is derived as follows.
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_ 2n—1
|, KO, E X0
and
_ _ 21
ZZ* |y _ZZ*Z* ZZ*Z(ZZZ+T D Zzz>I< )

where # z, | y and )2 z, | y are posterior

mean vector and covariance matrix of Z,, given

y As a consequence, using observations at
locations in set v, quantities at unobserved

locations, V, , can be predicted. Nonetheless, in

order to practically implement the full

inference, all of the mean parameters [ and

hyperparameters o 2, ¢ , and 72 are required

to be known; hence the estimations are

primarily discussed in the next subsection.

2.4. Parameter Estimation

Let  9=(02.4.02)eR

denote a

0

hyperparameter vector. The mean parameters
B and hyperparameters 6 that are hereafter
called model parameters of the spatial field
model can be estimated by utilizing generalized
least squares technique (Cressie, 1991) and the
maximum likelihood approach (Diggle and
Ribeiro, 2007). In the following, a recursive
algorithm for estimating the mean parameters

B and hyperparameters @ is delineated.

Rewriting the marginal distribution of y(v)
given model parameters yields

2 2 2
) 06.2%, f~ NXGBE_+7°D)  (10)
For the sake of simplicity, it is denoted
Y=Y 4’1,
zz

First, in the best linear unbiased estimator
1991), B

minimizing the function

F(B=00-x0WBT =60 -x0pB)

(Cressie, can be obtained by
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Figure 2. The true field of the soil organic matter content

Note: Percentage of the soil organic matter content is shown in color bar.

If given @ ,i.e. 2, is known, the estimated

[ can be specified by
p=xo = Lxoy lxoy = e ap

from (10) the
function can be obtained by

Second, log-likelihood

L0, B) = —% 0)-x0p) T ow)
—X(v)B)+logdet(>) +nlog(27)}

(12)

By substituting B into the log-likelihood

function and numerically optimizing this

2

function with respect to 0'2, ¢ , and <, the

estimated @ can be obtained. Eventually, f3
can be computed by the back substitution of 0 .

Notice that in order to optimize the log-
likelihood function, the partial derivative can be

specified by
oL 1 T ~1.02
—=——tr|(aa’ -2 )—/
601, 2 ( ) 6(91_

where a=Y " l(y(v)=X(v)p), and 0. is

o2, ¢ and 2
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3. RESULTS AND DISCUSSIONS

In this section, we provide experimental
performances of our proposed approach on
predicting the soil organic matter content for
whole space of interest using a specific number
of measurements collected by a wireless sensor
network. As described in Section 2.1.2, the
original reference of the soil organic matter
content in area of 100 m X 100 m was
reconstructed as shown in Fig. 2. And then a
network of wireless sensors was deployed by a
grid in the selected area. In the illustrated
experiments, 25, 16 and 9 sensing nodes were
positioned at white circles in Figures 3b, 3d and
3f, respectively.

All the sensors make observations and
transmit them to the sink via a specific routing
tree. Then the base station estimates the mean
parameters and hyperparameters for the
Gaussian process model of the soil organic matter
content. Based on the learned model, the
estimated values of soil organic matter field at all
unobserved locations of interest can be effectively
predicted. In the implementations, we carried out
the resulting predictions of means and error
variances for whole space of 100 m X 100 m area.
Note that the experiments were implemented in
two dimensional environments.
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Figure 3. The predicted fields and the predicted error variances of the SOM contents
using (a) and (b) 25, (c¢) and (d) 16, and (e) and (f) 9 sensors

Note: The positions of sensor nodes are illustrated by white circles.

Fig. 3 demonstrates the posterior means area. While Figures 3a and 3b show the
and posterior variances of the soil organic predicted results using 25 SOM observations,
matter content, predicted for whole studied pairs of Figures 3c and 3d, 3e and 3f illustrate
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Figure 4. Root mean square errors

resulting means and variances using SOM
measurements gauged by 16 and 9 sensor
nodes, respectively. It can be apparently seen
that the more numbers of sensing devices are,
the more accurate the resulting predictions of
the SOM content are. In equivalent words,
when 25 SOM sensors are in use, as deployed in
Fig. 3b, the snapshot of the surface of the SOM
content predicted in whole space of 100 m X 100
m in Fig. 3a is very close to the real image that
represents the SOM in the same area obtained
by the remote sensing technique, shown in Fig.
2. Moreover, even when we experimented with
only 16 measuring devices positioned at white
circles in Fig. 3d, the predicted means of the
SOM field demonstrated in Fig. 3c are highly
with  the
illustrated in Fig. 2. A bit less effectively when

comparable original reference
9 sensing nodes are located in the studied space,
the posterior prediction field shown in Fig.3e is
not intuitively reached to the expectation of the
original reference in Fig. 2. Nonetheless,
patterns corresponding to the SOM content
values in 3e are clearly classified as compared
with those in Fig. 2. In the context of variances,
it can be clearly seen that the accuracy of the
predictions is dependent on numbers of sensors
task. And, the

prediction errors at locations in the range

participating in sensing

around the sensor nodes are trivial.More
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importantly, to evaluate the quality of
prediction in the case studied we investigated
the root mean square errors (RMSE) of the
predicted field at M spatial locations of interest,

which are based on,

1 M L2
Vizl(”zl y[z]—zmj

RMSE =

where z is a vector of the values actually

observed, and H is a vector of predicted

z|y

means at  interested  positions  given
observations y. It can be clearly seen in Fig. 4
that the RMSE gradually reduce with increased
number of observations. Thus, given a required
accuracy of the predictions, projecting that
value to the RMSE curve, a number of sensors

can also be chosen for a network.

4. CONCLUSIONS

The paper has presented a Gaussian
process based inference approach to estimate
the soil organic matter content in space using
measurements gathered by a wireless sensor
network. The prediction surface of the soil
organic matter content experimentally obtained
by our proposed low-cost approach is highly
comparable to the image aerially captured by a



complicated, expensive remote sensing system,

which 1is practically unfeasible in some

circumstances. The proposed method 1is
potential to applying to precision agriculture,
where management of nitrogen is required. Our
system also allows farmers to choose a number
their

expected prediction accuracy. In future work,

of sensing nodes, corresponding to

we will concentrate on finding optimal locations
to deploy sensors.
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