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ABSTRACT

Monte Carlo criticality calculations use the power iteration method to determine the eigenvalue (k.ss) and
eigenfunction (fission source distribution) of the fundamental mode. However, the main problems of this method are
the slow convergence of fission source distribution from the initial guess to the stationary solution, and the correlation
between successive cycles which results in an under-prediction bias in the confident intervals of the estimated
response. In this paper, we presented the Wielandt's method aiming to accelerate the convergence of the Monte
Carlo power iteration. The object-oriented programming called Python prototype, was used to describe the standard
Monte Carlo criticality power iterations for mono-kinetic particles and to compare the results obtained by the two
different methods of acceleration mentioned above. The Wielandt's method successfully suppressed the auto-
correlation, even though no gain in the figure of merit seemed to occur.

Keywords: Eigenvalue, eigenfunction, Monte Carlo criticality, power iteration, Wielandt's.

(ng dung ngén ngi¥ lap trinh hwéng déi twong python
cho bai toan mé phéng sw truyén neutron trong 16 hat nhan
trong diéu kién t&i han véi cau trac hinh hoc phang
TOM TAT

S& dung phuong phap I&p theo ham mi dé giai phwong trinh truyén neutron trong 16 phan ¢ng hat nhan véi
cAu tric hinh hoc phéng, mét chiéu bang phwong phap mé phéng Monte Carlo dé xac dinh trj riéng va ham riéng
(twong tng v&i sy phan bd ctia ngudn phan hach) ton tai hai van d& chinh 1a: (1) sy hoi tu cham ctia ngudn phan
hach dy doan ban dau vé phan b thuc; (2) méi lién hé gitra cac chu ky trong méi mé phéng sé dan dén sai sb khi
danh gia do tin cay cta két qua thu dwoc. Do do, nghién clru nay da dé cap téi mot phwong phap méi, Wielandt, vai
muc dich tang tbc qua trinh hdi tu clia ngudn ban dau va dwa ra phwong an méi dé danh gia méi lién hé gitra cac
chu ki lién tiép trong mot md phéng ddc 1ap. Ngén ngi 1ap trinh hwéng déi twong c6 tén goi Python da duoc st dung
d& mo ta sy truyén cla hat neutron don nang, dong thoi so sanh két qua thu dwoc bang hai phwong phap khac
nhau. Két qua cho thay, phuong phap mai da giai quyét thanh cong cac van dé dat ra clia bai toan Monte Carlo. Tuy
nhién, bai toan vé& hé s6 phdm chét van can tiép tuc nghién ctvu thém.

Tl khoa: Bai toan téi han Monte Carlo, ham riéng, 14p theo ham s6 mii, phwong phap Wielandt, trj riéng.

Boltzmann equation (Reuss, 2008). Therefore,
the computer codes developed for nuclear

Basically, the behaviour of nuclear reactor reactor simulations have to solve this equation
can be simulated by coupling neutron transport in order to accurately describe the neutron
theory and thermal-hydraulics. The neutron transport in the reactor. Nowadays, the
transport theory studies the interaction of development of powerful computer has
neutron with matter, which is described by the enhanced the capability of not only

1. INTRODUCTION
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deterministic codes to numerically solve the
neutron transport equation, but also of
stochastic codes with very detailed geometry
and continuous energy description of the
neutron collisions. These stochastic codes are
known as Monte Carlo codes.

The basic principle of Monte Carlo method
in particle transport is to simulate the entire
life of each particle from its initial emission
until its death either by absorption or leakage
from the system boundaries. The frequency,
nature and outcome of every interaction that
may occur during the particle life are randomly
sampled according to algorithms derived from
particle physics laws. When the process is
repeated for a large number of particles, the
averages of the obtained results yield a detailed
description of the transport process. However,
the main problem in Monte Carlo criticality
calculations is the convergence of the power
iteration (https://docs.python.org/2/tutorial/) and
the technique used to converge an arbitrary
initial guess source distribution to thecritical
After the
is possible to tally desired

source distribution. source is
converged, it
quantities like the dominant eigenvalue of the
Boltzmann equationk,.sr, the corresponding
eigenvector (the stationary flux distribution),
reaction rates, etc.

This

problematic when the dominante ratio (ratio

convergence is known to be
between the second and the first eigenvalues of
the system) is close to one. This undesired
phenomenon occurs for large systems of the size
of about 100 times the neutron mean free path.
The consequence of the power iteration is, on
one hand, the correlation between successive
cycles, due to the fact that the fission source
bank of the previous cycle is used as a source for
current cycle. This can severely affect the
variance estimation, and always leads to
underestimate of the variance. On the other
hand, there
simulation necessary to converge the source
distribution to the stationary distribution;
during this phase the quantities of interest

is a transient phase of the
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cannot be tallied and this corresponds to
cycles. This
evaluated by performing the

“Iinactive” transient will be
criticality
simulations with two different initial source
guess: a uniform shape and a cosine shape,
which almost corresponds to the critical shape

for our numerical test.

Another method, named the Wielandt’s
method, has been proposed in order to improve
the slow convergence of the power iteration
implement. This acceleration method along with
the Monte Carlo standard are analysed in terms
of the advantages and disadvantages of each in
simple but meaningful test cases.

2. BASIC THEORY OF NEUTRON TRANSPORT

The transport equation describes the
statistical behaviour of a large population of
particles. The exact number of particles per unit
volume is continuously varying with time, even at
steady state conditions. Under steady state
the number density of particles
oscillates around an average value corresponding
to the solution of the steady state transport
equation. A solution of the transport equation is
required in many fields of nuclear engineering,
notably in reactor physics, insafety and criticality,
and in radiation shielding and protection.

conditions,

The fundamental assumptions in neutron
transport calculation are as following: neutrons
ca nbe treated as point-like particles travelling
along straight lines between two collision
points, and all neutron-neutron interactions can
be ignored. These assumptions lead to a linear

Additional
made are

transport equation. usual

assumptions  often medium
homogeneity by regions and time-independent

conditions.

2.1. The steady-state Boltzmann neutron
transport equation

The stationary behavior of neutral particles
transported through matter is described by the
steady-state Boltzmann

linear transport

equation:
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A.VY(rE Q) +25.(r,E)¥(r,E Q) =
[ I 2@ E > E,Q.Q)¥ (1E Q) dE' d?Q +
QrED) o)

where:

- ¥(r,E,Q) is the angular flux in six-
dimensional phase space

-LY = ﬁ.V‘P(r,E,ﬁ), the streaming term or
leakage term (describe the neutrons crossing
the boundaries)

-T¥ = 3,(r, E)¥(r, E, @), the collision term

SY = [, J 5 E - EQ.0)%(r E 0')dE a2,
the scattering term (describe the change in
energy and direction of neutron particles)

-MY = Q(r, E, ﬁ), the neutron source term

- % : differential scattering macroscopic
cross section

- X, : total macroscopic cross section

For criticality problem, neutron fission

source comes from the fissile materials during
fission events:

Q(r,EQ) = '
LB (1o EY W (r, E,0 ) dE'd2Q (2

keff 4m

The quantities of interest are:

- the largest eigenvalue or multiplication
factor: kesr

- various rates:

[Z(x,E)®(x,E)dE

response R(x) =

2.2. The solution of theneutron transport
equation in special case of critical slab
geometry

one-dimensional
homogeneous critical slab within one-group
diffusion theory, the general form of Eq.(1) can
be simplified to the simple form:

2
L0 4 290 =0 (3)

In the case of

-t kom1) .
G D =1 §s the material
) L

where y?
buckling. In general, k, = epfn - the infinitive
multiplication factor, in which:

- ¢: fast fission factor;

- p: resonance escape probability

- f: thermal utilization factor;

- = (%)fuel: the production factor

By taking into account the condition of the
vanishing of the flux at the boundaries and the
symmetry of the problem with respect to the
plan at x = 0; also the critical condition: y = %,

_  the scalar flux distribution or the solution of the Eq.(3) is written as following:
eigenfunction: ¢ (x, E) d(x) = %cos (%) (4)
Flux in Slab
2 [
003
0.0255—
0_022—
o.msf—
u.mf—
o.oosf—
o~
e RS N SN R R E RS B
T z 10 10 30
X {cm})

Fig. 1. The distribution of flux inside the critical slab
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2.3. The Power iteration method

The standard Monte criticality
calculation uses the fission source iteration that

Carlo

is a simple power iteration to find the
fundamental (biggest) eigenvalue k, and its

associated eigenvector V.
Re-writing (1) by using abbreviations:

L+T-S¥ = —M¥ 5)
Keff

The principle of the power iteration method
is to evaluate the neutron flux at iteration
n+1, %@ by applying the operator F = (L+T-
S)'M on the flux at iteration n,¥™. By
supposing that the values of flux and ks are
known from iteration n, we can find out the
values for iteration n+1 according to the
following procedures:

whtl) _ LF\{J(H)

K

and kG = KpLESTE @

where V is the six-dimensional phase space
(space, energy and direction).

Supposing {u; } is the set of eigenvectors of
the operator F and that it forms a basis, any
initial flux distribution can be expanded in
function of{u, }:

YO = Yau with a; = [dv ¥©uy, (7)

Successive applications of the operator F to
the initial distribution will converge to the
fundamental eigenvalue and eigenvector. It can
be shown that both flux and multiplication
factor can be approximated by using [4]:

k (n+1)
YD = ¢ ug + z—:(k—:) * u1] and
m+1) a (e \® |k
keff ~ ko [1 G ao (ko) * (k.) 1) ®

It is well-known that the dominant error
terms for k, decay faster than the dominant
error terms for W, especially when the
dominance ratio p = k,/k, is close to 1, that is for
very large system with characteristic
dimensions of several (~100) times the neutron
mean free path. For this reason, the
fundamental eigenvalue for a high dominance
ratio problem will appear to converge faster
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than the associated eigenvector, which will be
more contaminated by the higher harmonics.

3. MONTE CARLO SIMULATIONS

3.1. The random walk for a single neutron

The random walk process provides a
faithful simulation of the behaviour of a single
particle, from source to death. It is a continuous
line made of straight free paths connected at
collision locations (scattering, absorption,
fission) of the domain and by the cross-section
data corresponding to materials present in the
domain. During this walk, the particle state is
characterized by its position, direction of travel
and energy.

The random walks can be generated by:

- sampling the travelled distance in space

- sampling the type of reaction

- sampling the direction of the particle after
the collision from the continuous distribution
function related to the sampled reaction

fission

absorption

X

Fig. 2a. Three modes of interaction
of neutron

3.2. Criticality calculations

Nuclear criticality is the ability to sustain a
chain reaction with fission neutrons. In this
case, the Monte Carlo simulation proceeds in
cycles, in which the source in each cycle is given
by the fission neutron distribution calculated in
the previous cycle. Each cycle comprises the
simulation of a batch of neutrons containing N
source fission neutrons each of them executted
by a single random walk. The number of
neutrons generated at the end of each cycle is
generally not equal to the number ofs ource
neutrons which started at the beginning of the
cycle. The multiplication factor in cycle n is
defined as ratio:
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Start a new cycle

‘ Inherit the fission source sites from ‘

the previous cycle

Get a fission source data from the
fission source bank and start a particle

L
“

Follow this particle ¢

Determine if the
particle is killed

All neutron

exhausted

l yes

Determine if fission occurs
yes
no

from the fission source sites are

Calculate: eigenvalue
eigenvector

Go to the next cycle

Store fission
source sites for
using in the
next cycle

no

no

Fig. 2b. Random walk for a single neutron from the source to death

number of fission neutron in generation N+1

kegs = ©)

number of fission neutron in generation N

The quality of the initial spatial
distribution of source neutrons is an important
issue. A very poor initial source guess can cause
several first cycles estimate of k .4 to be
extremely poor. This situation can occur when
only a small fraction of the fission source has a
chance to make fissions.

4. ACCELERATION METHODS

4.1. Standard Monte Carlo method

The standard Monte Carlo method for
criticality calculation uses the power iteration
algorithm to converge the user defined source to
the stationary solution. The basis idea of this
standard method is to follow neutron particles,
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from the source to the end of its life by leakage
from outer boundaries or absorption, etc,
generation by generation. This is achieved by
defining an initial fission bank from the user
source definition. All the neutrons of the bank
are followed one by one until all the particles
are exhausted, and whenever a fission occurs
the corresponding fission neutrons are put in
the next cycle fission bank. This is described in
the Fig.3(a,b):

- All fission neutrons

of the same

generation are put in a cycle

- Fission neutrons of the current cycle
become the fission source of the next cycle
iteration

- Eigenvalue and eigenvector will be
estimated at the end of each cycle.
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"
=
™

11T
Pt s
;‘/f

initial

guess cycle 1 cycle 2 cycle 3

Fig. 3a. Definition the cycle of simulation

Set properties of the neutron source:

energy: E=1. d: is the distance
position (x, 0, 0) to the boundary

direction (isotropic in LAB)

volume index
> v ‘
particle stil no 7
inside Slab? oid
| !

L

Compute the free path using /
Compare / and d 1=d

1 <d
Compute the end position of free path yes
Determine:
volume index _-In(®
medium t= T,

ves

[ Determine the type of reaction |

il

‘absorption‘ ‘ scattering ‘ ‘ branching ‘
Find the new direction
of secondary particles

Fig. 3b: Implementation of standard Monte Carlo method

(n,2n)

reactor calculation in the 1950s and 1960s.

4.2. Wielandt's method for criticality  More details of this method were described by

simulation Brian et al. (2008). The main principles of

Wielandt’s method was first applied to criticality simulation by Wielandt's method is
accelerate the solution of diffusion theory  described in Fig.4:
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Start from a fission source site

W

©

Standard Monte Carlo method

Killed

Start from a fission source site

X
Killed

T
0)

Wielandt's method

e O _
X Killed

Fig. 4. Compare MC and Wielandt’s of implementation

The difference between standard Monte
Carlo method and Wielandt's method lies in the
way we treat the neutrons produced by fission.
For MC, each fission neutron is put in the next
cycle, but for the Wielandt's method, a fraction
of these neutrons are kept in the current cycle
and continued to be tracked in a single random
walk by the probability condition:

( 1
kerr

ke = keps +40(a(kesr)); 0 is the variance of

Vvif
Xt

1

ke) +£<08 (10)

Neurrent =

variance of kg

If fission is determined to be occurring, the
number of fission neutrons N,,,,., are tracked by
the same random walks in the current cycle just
like other source particles. These neutrons
producing their progenies, and
continue tracking within the current cycle until
their death by leakage, absorption, etc, (Fig. 4).
The chain of current-generation neutrons
followed by such away will be treated as a part
of the same initial history in the iteration, so
that correlation effects between successive

continue

fissions will decrease. This improved statistical
treatment should reduce the under-prediction

bias in confidence intervals for criticality

calculations. The value on the right hand side of
Eq.(10) depends on the size of the slab, the
larger the slab is the higher the value is.

5. RESULTS AND DISCUSSION
5.1. Numerical parameters

5.1.1. Properties of homogeneous slab

To simplify our problem, we consider a 1D
homogeneous slab with void boundary conditions.
In our criticality simulations, the particles are
supposed to be mono-kinetic (MKParticle: its
velocity is always constant and it doesn't change
with scattering collisions), and the fission and
scattering interactions are supposed isotropic. The
homogeneous medium was chosen with the
following properties in Tab. 1.

5.1.2. Parameters of simulations

- Simulations will be performed for three
different lengths of slab: L. = 10; 50; 100 (cm)

- Two different shapes of initial fission
source guess (uniform and cosine shape) are
also investigated to analyze the behavior of the
transient phase.

Tab. 1. Macroscopic cross section for homogeneous slab

Types of reaction total

absorption

scattering branching

Macroscopic cross section (cm™)

3

a

P

s

0,2 08 % =01
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5.2. Numerical results

5.2.1. The dependence of k. on the size of
the critical slab

By definition of multiplication factor, this
quantity is the ratio of the total number of
particles produced by fission at the end of the
cycle to the number of initial particles; this ratio
is strongly sensitive to the effect of leakage from
the boundaries. For the same slab material
properties, the smaller the length of the slab,
the bigger the effect of leakage, and finally the
lower the value of k., We also note that the
smaller the size of the slab (in mean free paths),
the better the particle can explore the entire
slab in a single generation. For large slabs, it
takes several generations for a particle to travel
from one side of the system to the other. Note
that: 1pcm = 107

The adoption of the Wielandt's method
leads to an increase of statistics because of the
tracking of additional particles in each cycle.
Consequently, the fluctuations and the
standard deviation of multiplication factor are
less than the one implemented by conventional
Monte Carlo simulations. Those results could be
seen clearly on Fig. 5 for the case L = 100 cm.
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5.2.2. Figure of Merit (FOM)

In Monte Carlo simulations, the variance
associated with the estimated quantities is
(asymptotically) linearly proportional to the
of the of
simulated: 0% = 1/\/N On the other hand, the

inverse number histories

simulation time is roughly proportional to the
This has led, for the
comparison of different simulations and/or

number of histories.

different methods in terms of efficiency, to the
definition of a criterion called Figure of Merit
(FOM): FOM = % (11), in which T is the
simulation time.

When comparing two set of simulations on
the same problem, the run with a bigger FOM is
considered more efficient (smaller variance
and/or smaller computing time). To evaluate the
efficiency of our different implemented methods,
have carried out a group of 1000
independent simulations, 1000 particles, 1000
cycles for slab length L = 50 cm.

The FOM for MC and Wielandt's are not
much different and the gains in variance due to
the improved statistics are compensated by the

we

extra time spent in the simulations (Table 3).

Tab. 2. The values of k. for different methods

Slab length (L in cm) MC (o in pcm) Wielandt (¢ in pcm)
10 0,88931 + 3,2 0,88845 + 1,5
50 0,99371 £ 20,1 0,99298 + 5,6
100 0,99832 + 28,9 0,99779 + 16,6

05985 -

T LTI
Sl i i Wﬂ I

f

'fo

i HﬁH

S it

k_

t %
w J it Hﬁﬁi ﬁ 4

i
%

f

0.5970

. L L
T 40 Lt

i
AL
cycles member

Fig. 5. The fluctuation k in MC and Wielandt for L = 100 cm

N I
i
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Tab. 3. FOM of 1000 independent simulationsfor L = 50 cm

Wielandt's

Methods MC
Time (h) 100
5%(10™) 404
FOM 69

419
87
77

5.2.3. Auto-correlation estimation

The cycle to cycle correlation is one of the
main problems of the power iteration method,
due to the fact that the source of neutrons for
the next cycle comes from neutron which have
suffered fission in the current cycle. This
correlation depends on the size of the system:
more cycles are required for neutron to be
propagated from one side to the other of larger
systems. This correlation length (Malvagi et al.,
2012) can be estimated at the end of the Monte
Carlo simulation by introducing an empirical
correlation function as following:

¢ = ((@i=p) (Dt —p)) (12)

o2
where:
- @; the flux at cycle i;
- u the expected value of variable ®
- 0?2 the variance of variable ®;
-k =1
of the auto-correlation
indicates that the sequence made by consecutive
values of ®; with 1 = 1,2 ,... , k are weakly

A low value

L —— ——cell 11 =100
3 == —4—cedal
Eos
< B
05 *5
04
03

o
)

AL AR RRRRS LAAR LAY LN RRRR L

3

o
=Y

1 I
10 10% k

Fig. 6. Correlation vs k for bin 11 (start
curve) and bin 41 (diamon curve) for L = 100
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correlated. We see that the auto-correlation
decreases with the value of the lag k (Fig.6).
When this value is below the cutoff threshold of
0.2, we empirically consider that is
uncorrelated. On Fig.7 we plot the value of the
lag for which the auto-correlation descends
under the cutoff versus the bin number
corresponding to the slab with the length of 100
and 50 cm, respectively, simulated by standard
MC and Wielandt's method. This figure is
consistent with the theory discussed above: the
larger the slab, the higher the value of
correlation length. By adopting Wielandt's
method to treat the cycle-to-cyclecorrelation,
this quantity strongly decreases from 86 to 45
for L = 100 ¢cm (high DR problem) and from 40
to 10 for L = 50 cm. From our simulations for L
=10 cm, there is no correlation problem for any
of the methods. It also remarks that the
correlations are at the lowest near the
boundaries of the system (this is due to the
effects of the boundary conditions) and at its
center (this is where the second harmonics has
a node).

90| 4 —+— MC o
o%%e, 4  —4— Wielandt ORI
80 it A n X
E . . Py %
7oF- ., K) A
coE- * ‘.‘ .‘ L=100 o
=} *
.. ‘...
soE-* o0 .
AT, S hl
40Le  Hlaas, T PO
oo % * ox
30f x4 iy ks s
* 2 *
'*u AR e L=50  *
20 N i * s
10, ettty Tttt
2 | ‘1‘“"“"?‘ |
bt . . A . -
0 10 20 30 a0 50

Fig. 7. Correlation cut-off (0,2)
as function of number of bin cells



5.2.4. Wielandt's method implementation to
cancel the auto-correlation

The basic idea of Wielandt's method is to
keep neutrons to stay longer in each cycle and,
thus, spreading out more in space compared to
the standard MC. To be better understood the
effects of this method on the correlation lengths,
we carried out the simulations for L. = 100 cm
(large size) for a set of 100 independent
simulations, varying the fraction of fission
neutrons kept in each cycle.

Fig. 8 plotts the max of correlation cutoff in
the slab as a function of the fraction of fission
neutrons kept in each cycle. We can conclude
that for high dominant ratio systems (larger
size), the Wielandt's method is a useful way to
decrease the cycle by cycle correlations.

5.3. Fission source convergence

5.3.1. Characteristics of the fission source
convergence as a function of the initial
source guess and slab size

The power iteration technique allows to
converge a user defined source to the critical
source distribution in Monte Carlo simulation.
For 1D homogeneous slab geometry, void
boundary condition and for both uniform and
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cosine initial source guess distribution, we
expect the equilibrium flux distribution to
assume a cosine form in space (predicted by
diffusion theory). The convergence of the
criticality simulation is estimated by measuring
the flux in each spatial bin. In this part, the
behaviour of fission source convergence
depending on the slab length and initial source
guess is investigated. The results are described
in Fig. 9.

The Fig. 9(a) shows the flux convergence and
fluctuations, for L = 50 cm, for the both uniform
and cosine shape implemented by standard MC
and Wielandt's for simulations. These indicate
the importance of choosing the right initial
source guess for MC to quickly converge the flux
distribution. However, by adopting Wielandt’s
method, we can find the robust initial guess of
user defined source because of increasing the
statistics of each cycle iteration leading to
increase the spatial distribution.

For the case of L = 100 c¢cm, in Fig.9(b), the
results are presented for the same uniform
source guess but for the set of 1 and 100
independent simulations. The fluctuations and,
specially, transient phase are hightly enhanced.
We obtain very large size system with a high
dominance ratio.

1004
£ 904 ¢ ¢
° ¢
S 804
M ¢
70 ¢ .
S 60
= ¢
c
© 401
.; 30 ¢
g 201
S 10+
3

0 T T T T T T T T T 1
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 8. Correlation length for cut-off factor 0,2 and L = 100 cm
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L=50cm Monte Carlo

Wielandt's

Uniform
(1 simu)

(a)

Cosine
(1 simu)

(@)

L =100
cm

uniform
(1 simu)

(b)

uniform
(100
simus)

(b)

Fig. 9. The distribution of flux in special grid as function of cycle iteration

For each independent simulation, standard
MC results in the source distribution are very
concentrated in some small region of the slab.
This behavior can be explained as follow: in the
regions where more fission neutrons exist, there
will be a high probability for the neutrons
interacting with medium to produce new fission
neutrons. On the contrary, by adopting
Wielandt's method for the same initial number
of particles: moreparticles will be tracked in one
cycles; these particles will expand in a greater
spatial region of the slab system. Consequently,
the fission source distribution will spread out
more in a given number of cycles.
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6. CONCLUSION AND FUTURE OUTLOOK

The main objective of this article was to use
a Python prototype to implement the standard
Monte Carlo criticality power iterations for
mono-kinetic particles and to compare with the
Wielandt's method of accelerating the power
iteration. Numerical simulations of a critical
slab of varying lengths where then used to
compare the performances of these methods.

The author was successful to implement
and modify the available source code in the
laboratory of SERMA in CEA for the standard
Monte Carlo which is the most basic method of




implementation to describe the interaction of
neutrons in the core. However, due to the slow
convergence of the source, especially in the case
of the linear initial shape and large size of the
geometry, it needs to accelerate the process of
the convergence to get the better results in the
same level of the competence.

The Wieland’s method implemented was only
concentrated in the direction of accelerating the
source convergence and there were no ideas to
estimate the multiplication factor, k., which is
one of the most important quantity to know if the
new method is suitable or not.

The three keys objectives has been obtained
as following:

- Based on the basic of Wielandt’s method
to accelerate and to reduce the time of
convergence of any kind of initial guess source.

- Proposing the new way to estimate the
value of k. inside the code and compare it to
the one of MC

- Estimating the correlation between cycle
to cycle by increasing the statistics for the same
initial condition with the old method of MC.

There is a need of future work for a better
idea of the biases of those methods that can
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introduce into the simulation as a function of their
respective parameters: fraction of fission neutrons
kept in the current cycle for Wielandt's. Another
question not explored is the optimisation between
the number of cycles run in a simulation and the
number of independent simulations in order to
minimize the final variance, which will certainly
depend on the method.

REFERENCES

Brian, C. Kiedrowski, Forrest B (2008). Brown. Using
Wielandt’s Method to Eliminate Confidence
Interval  Underprediction Bias in  MCNPS
Criticality Calculations.

Brown F. (2005). Fundamentals of Monte Carlo
Particle Transport. LAUR -05-4983, Los Alamos
National Laboratory.

Fausto Malvagi, Eric Dumonteil, Francois-Xavier
Hugot (2012). Les bonnes pratiques dans les
calculs critiques en Monte Carlo. Commissariat a
I’Energie Atomique DEN/DANS/DM2S/SERMA.

https://docs.python.org/2/tutorial/

https://root.cern.ch/drupal/

Kitada T., T. Takeda (2000). Effective Convergence of
Fission Source Distribution in Monte Carlo
Simulation. J. Nucl. Sci. Techlo., 38(5): 324 - 329.

Paul Reuss (2008). Neutron Physics. Institute National
des Sciences et Techniques Nuclear.

1027



