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ABSTRACT

In this paper, theoretical formulation, Navier’s solutions, and finite element models based on the first-order shear
deformation shell theory are presented for the free vibration analysis of functionally graded doubly-curved shallow
shell panels including thermal effects. The temperature field was considered to have a uniform distribution over the
shell surface and varied in the thickness direction only. The material properties were assumed to be temperature-
dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume
fractions of the constituents. All four edges of the shell panels were assumed to be simply supported. Comparisons
reveal that the numerical results obtained from the proposed method agree well with those available in the literature.
The effects of the side-to-thickness ratio (a/h), temperature fields (T¢), and volume fraction distribution (p) on the
natural frequencies of the functionally graded doubly-curved shallow shell panels were also investigated in the
present study.

Keywords: Functionally graded materials (FGM), free vibration analysis, FSDT, FEM, thermal environment,
doubly-curved shells.

Phéan tich dao déng riéng vé thoai hai dé cong
c6 co tinh bién thién ké dén anh hwéng cta nhiét do

TOM TAT

Bai bao trinh bay |&i gidi giai tich va md hinh phan t& hiru han trén co s& ly thuyét vé bac nhét (5 &n s chuyén
vi) cho bai toan phan tich dao déng riéng vé thoai hai do cong cé co tinh bién thién va cé xét dén anh hwéng cla
nhiét 6. Trwdng nhiét do duwoc xét dén 1a phan bb déu trén cac bé mat vé va chi bién thién theo phuwong chidu day
vd. Cac co tinh cla vat liéu FGM duoc gia thiét phu thudc vao nhiét o va thay ddi doc theo phuwong chidu day véi
quy luat ctia ham ldly thira. Cac ddi twong vé dwoc khao sat véi didu kién bién twa khép trén tat ca cac canh. Két qua
sb da dwoc kiém ching voi két qua cla cac tac gia khac cho thdy sw twong dbéng cling nhw dd tin cay cua hai o gidi
d& xuét trong nghién ctru nay. M&t khac, anh hwéng cua ti sé kich thwéc canh/chiéu day vé (a/h), trwdng nhiét do
(Tec) va chi sb ti & thé tich vat liéu (p) dén gia tri tAn s6 dao déng riéng cla vo thoai hai d6 cong cling da duoc khao
séat théng qua cac vi du sé.

T khéa: Vat lieu c6 co tinh bién thién (FGM), phan tich dao déng riéng, Iy thuyét bién dang cét bac nhéat
(FSDT), phwong phap phan ti hiru han, méi trwdng nhiét, vé hai 6 cong.

high-temperature  environments such as

1. INTRODUCTION

nuclear reactors, space planes, and chemical

Functionally graded materials (FGMs)

are frequently used in engineering

communities, especially in applications for
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plants. Typical FGMs are made from a mixture
of ceramic and metal, or a combination of
different metals. The

ceramic constituent
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provides high-temperature resistance due to its
low thermal conductivity. The ductile metal
constituent, on the other hand, prevents
fractures caused by stresses due to a high-
temperature gradient over a very short period of
There are numerous studies on the
of FGM

structures which have been carried out to date.

time.

thermo-mechanical characteristics

Generally, the studies of static and dynamic
analyses of functionally graded shells working in

well-established
throughout the literature. Kadoli and Ganesan

thermal environments are
(2006) presented a linear thermal buckling and
free vibration analyses for functionally graded
shells  with
boundary conditions and with temperature-

cylindrical clamped-clamped
dependent material properties. The first-order
shear deformation theory along with the Fourier
series expansion of the displacement variables in
the circumferential direction were used to model
the FGM shell. Shen and Wang (2010)
investigated the thermoelastic vibration and
buckling characteristics of the functionally
graded piezoelectric cylindrical shell using the
Maxwell equation with a quadratic variation of
the electric potential along the thickness
direction of the cylindrical shells and the first-
order shear deformation theory. Based on Love’s
shell theory and the von Karman-Donnell-type of
kinematic nonlinearity, free vibration analysis of
simply supported FG cylindrical shells for four
sets of in-plane boundary conditions was
performed by Haddadpour et al (2007) using
Galerkin’s method. The free vibration analysis of
rotating functionally graded (FG) cylindrical
shells subjected to thermal environment was
investigated based on the first order shear
deformation theory of shells and was reported in
the work of Malekzadeh and Heydarpour (2012).
(2010)

investigated the free vibration and buckling

Pradyumna and  Bandyopadhyay

behaviors of functionally graded singly and
doubly shell
environments. A higher-order shear deformation

curved panels in thermal
theory was used and the shell panels were
subjected to a temperature field. Bhangale et al.

(2006) used the first-order shear deformation

theory to study the thermal buckling and
vibration behaviors of truncated FGM conical
shells in a high-temperature environment by the
finite element method. Temperature-dependent
material properties were considered to carry out
linear thermal buckling and free vibration
analyses. Zhao and Liew (2009) studied the static
response and free vibration characteristics of
metal and ceramic functionally graded shells
using the element-free kp-Ritz method. The
displacement field was expressed in terms of a
set of mesh-free kernel particle functions
according to Sander’s first-order shear
deformation shell theory. Wattanasakulpong and
Chaikittiratana (2015)

investigation of free vibration of stiffened

presented an

functionally graded doubly curved shallow shells
under a thermal environment. Two types of
temperature icreases, linear and nonlinear, were
shell thickness.
studied geometrically

considered throughout the
(2011)
nonlinear vibrations
shells
variations and harmonic excitation via the

Alijjani et al
of functionally graded
doubly curved subjected to thermal

doubly-modal energy approach.

Recently, there have been many local
authors who have studied this issue. Quan and
Duc (2016), using Reddy’s third-order shear
deformation shell theory, investigated nonlinear
vibration and dynamic responses of imperfect
functionally graded materials (FGM) using
thick double-curved shallow shells resting on
elastic foundations in thermal environments.
Duc et al

approach by using the Galerkin method to study

(2017) proposed an analytical

the nonlinear dynamics and vibration of S-FGM
spherical shallow shells with different types of
boundary conditions resting on EF in a thermal
environment. A third-order shear deformation
theory was used by Dong and Dung (2017) for
the nonlinear vibration analysis of stiffened
functionally graded material, sandwiched
doubly, curved shallow shells with four material
models. It can be seen clearly that most of these
studies refer to a nonlinear analysis of the
doubly-curved shells by using an analytical

approach.
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However, studies on the free vibration
analysis of FGM doubly-curved shell panels in a
thermal environment are rare in the literature.
Thus, for study purposes in this paper, an
analytical solution and finite element model
based on the first-order shear deformation
theory were used for the free vibration analysis
of three shell panels, namely, cylindrical (CYL),
spherical (SPH), and hyperbolic paraboloidal

(HYP) in thermal a environment.

2. THEORITICAL FORMULATION

In the present study, the shell panels are
denoted length a, width b, and thickness h, and
are referred to using an orthogonal curvilinear
coordinate system (X, y, z), as shown in Fig. 1.
R, and R, are the radius of principal curvatures
of the middle surface in the x-direction and y-
direction, respectively. The elastic material
properties vary throughout the shell thickness
according to the volume fractions of the
constituents. The top surface (z = h/2) of the
shell is assumed ceramic-rich, whereas the

h/2) is metal rich. The

bottom surface (z

z 1

E(z,T)=E, (T)+[E.(T)-E, (T)](EJFET ; K(2) =K, +(x —Km)(%JrEJp ;

l p
2

(2, T) = ot (T) + [t (T) -ty (T)](§+

We assumed that the temperature variation
occurs in the thickness direction only and the
one-dimensional temperature field is constant
in the XY plane of the shell. In such a case, the
temperature  distribution throughout the
thickness of the FGM shell can be obtained by
solving a steady-state heat transfer equation as

effective properties of the functionally graded
material at any thickness coordinate z can be
expressed following a power law distribution as

z 1Y
P(Z’T):(Pc_Pm) —+- +Pm (1)

h 2
where p is the volume fraction exponent,

and P, and
metal and ceramic, respectively. The properties

P, represent the properties of the
of the temperature-dependent constituents of
the constituent materials are the same as
presented by Yang and Shen (2001):

P(T)=P,(P.,T ' +1+PT+P, T +P,T°) (2)

where are the

P,,P,,P,P, and P,

coefficients of temperature T(K) and are unique
to the constituent materials.

In the present analysis, Young’s modulus
E and thermal expansion coefficient a are
to  be
whereas the mass density p and thermal
to the
temperature. The Poisson ratio v is assumed
to be constant [10]:

assumed temperature-dependent,

conductivity K are independent

1
, (3)
z 1
s p(2)=p, +(p.—pPn) =+= | -
p(2)=pn +(p.—p )(h 2)
d dT
——|k(z2)— |=04
dZ[K()dZ} @
This equation is solved by imposing

boundary conditions of T= T,at Z=h/2 and T =
T,, at Z = -h/2. The solution of this equation, by
means of a polynomial series, is [11]:

T(2) =Ty +(T. =Ty )n(2) 5) with

s (62)

4p+l cm 5p+1

follows:
_ Kcm p+1 Kgm X2p+1
( ) 1 (p+1)1<m (2p+1)1<r2n
nz)=—=
C _ Kgm 3p+l Kém
(3p 4—1)1{?n (4p +1)Kfn
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X:(Z +1j; Ko =K, — Ky

h 2
« 2 & o o (6b)
C=1- cm cm _ cm cm _ cm
(1),  (2p+1)xd  (3p+1)is  (4p+i)icts  (Bp+i)ics

Figure 1. A functionally graded doubly curved shallow shell

the
deformation shell theory, the displacement field

According to first-order  shear

can be expressed as

U(X,Y,z,t) =Uy (X, Y, 1) + 20, (X, Y, 1)

V(X Y,Z, )=V (XY, ) +24, (X, Y, t) (7)
W(X,Y,z,t)=w,(X,y,t)
€y 8?( Ky 0
g, r=18 r+Z3K, ¢ {y”}={ygz}=

YXZ sz
yxy ygy ny ¢x+
where
09U Wo. o OVo Wo. 0 _ 90Uy 9V,
“ox RSV oy R, oy ox

0 0

b, +

T ox YT oy Y T Ty

OX

where u,, v,, and w, are the displacements
at the mid-surface of the shell in the x, y, and z
and ¢, and (I)y

directions, respectively,

represent the rotations of the transverse normal

about the x and y axes, respectively.

The linear strains are defined as:

MWy Vo

oy R, @®
OW, Ug

ox R,

9)

Then, the linear constitutive relations are expressed as

Oyx _Q11 Q, O 0

Oyy Q, Qp 0 0

Oxy 0 0 Qg O

Gy, 0 0 0 Q44

o, |0 0 0 0
where

0
0
0
0

Q55_

€

X

&y

ny
Tyz
Txz

(10)
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Q= Q= =250 = V2B Q= Qi = Qi =
-V 1-v?

E(z,T)
2(1+v)

The total in-plane force resultants, total moment resultants, and transverse force resultants are
defined by:

(11

N hi2 | Oxx M, hi2 | £O0xx hi2
_ . _ yz
N, o= J. G,y dz; M, = I chy { } K, I{ } z (12)
-2 | o M 2| 5o Q. —n2 | Ox

Xy Xy Xy Xy
XX All A12 0 Bll Blz 0 1
yy A12 A22 O BlZ BZZ 0

N

N

N

IRE R
M, B, B, 0 Dy Dy 0 Q. Lo Ass V>O<z
M 2 By 0 Dy Dy y

Mxy 0 0 By, O 0 Desj

m m
X°2<oxo

=2

o
A A

A

where
hi2

(A B;Dy)= | Qy(Lz2%)dz  (ij)=11 12, 21, 22, 66

ijr =ij?
-h/2

hi2 (13)

A= | Qz (ij)=44, 55
—hr2
and k., denotes the transverse shear correction coefficient which is taken to be k, = 5/6. The

temperature is assumed to only vary along the thickness direction of the shell, thus, t,, = 0. The

thermoelastic constitutive for the FG shell in the x, y directions are expressed as follows:

ol =oll) = ——E(Z’I)Q(Z’T) AT (19)
%

where, AT = T(Z) — T, is the temperature increase from the reference temperature T, at which
there are no thermal strains.

The equations of motion using the Hamilton’s principle can be written as (Wattanasakulpong
and Chaikittiratana, 2015):

2 2 2 2 2

Ny Ny Qs _ pr Tl a7 O r O g 00y O |y O,

oX 6y R, OX oy OX oy ot ot
oN,, oN,, 2 2y 0 o 2 &
o Tl B _pr O ar OV g O gr, O 1 Oy, O

OX 8y R OX oy’ OX oy ot ot

2 2 2
as aQ ; l; - Ryy =Au aaw A aam2 +|088\t/\2/0 (15)
X y y X y

oM,, oM &°u o’u 8%, o, O, | 39,
ox ayyy ~Qu =By e +Ba o " Dy o Dz oyt . at20 e
oM, oM oV oV 8% %, v, . 0%

ox " ayyy =B g tBa 2 D+ D ay2y o e
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where,
h/2
(AlTl'BlTl’DlTl = J. G(xTx)(lv Z, 22)_dz
—hr2
Agz :AlTl; Bgz = BlTl; DL = DlTl (16)
hi2

| = I p(z).z'dz

—-h/2

i=(0, 1, 2)

By substituting the force resultants, total
moment resultants, and transverse force
resultants in Eq. (15) with those of Eq. (12), the
governing equations for the FG doubly curved
shell are obtained in terms of the displacement
variables of Egs. (15).

3. ANALYTICAL SOLUTION

Based on Navier's approach, the
displacement unknowns satisfying the simply
supported boundary conditions for the FG
doubly-curved shell panel can be expressed in
the following forms:

U, (X, Y, t) u, e cos(ax)sin(py)
Vv, (X, Y, 1) ) v,.e°'sin(ax)cos(By)

W, (X, Y, 1) ¢ = iz w,.e°'sin(ax)sin(By)

m=1n=1

7

o, (X, 1) Oymn€ ' COS(aX)sin(By)
¢, (x,y,1) dyme€'”'sin(ax)cos(By)
where  Upn, Vi Wi, (I)xmn’ ¢ymn are the

unknown coefficients; 1 is the imaginary unit (i*
= -1); ® 1is the
o=mn/a;p=nmn/b;

natural frequency;

A simplified form of the equation of motion
can be obtained by substituting Eq. (17) into the
terms of displacement variables of Eq. (15) to

obtain
([K]5x5 -’ [M]5x5 ){A}le = {0}5><1 (18)
where
N, O 000 00
[B']=| 0 N, 0 0 0f[B]=[0 0
N, N, 000 00
g1 [0 0 N N0
[J‘oo N, 0 N,

[K]sxs and [M]5x5 are the stiffness matrix
and the mass matrix, respectively. Kij and M, j

are the elements which can be obtained by the
Symbolic Toolbox using the Matlab software.

{A}lez{umn an Wmn d)xmn d)ymn}T
The

obtained by solving the above eigenvalue type
equation (Eq. 18). With each pair of m and n, there is
a corresponsive unique mode shape of the natural
frequency for the FG doubly-curved shell.

natural frequency, © can be

mn?

4. FINITE ELEMENT MODEL

When the
quadratic

nine-nodded isoparametric

element 1s adopted and the

interpolation formulated, the spatial
coordinates are:
9 9
x=2Nx ; y=> Ny, (19)
i-1 i-1

where N, is the quadratic shape function.

The displacement vector {U} at any point

(x, vy, 0) on the mid-plane is defined in terms of
nodal variables via the shape function matrix

[N] as
{up=[NJu,

} (20)
where {u}=[u, v, w, 6, Oy]T (21)

In which {Ui} is the nodal displacement

vector of element i. From equations (20) and
(21) the reduced strain vector [5] can be

written as

&} =[B]{u} 22)

where [B]=[[B] [B,] ... [B]] @3
with

N, 0 0

0 0 N,

0 Ni,y Ni,x (24)
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In which N;  and Ni’y are the derivatives

of the shape functions in the x and y directions,
respectively 1 =1, 2, .., 9).

Substituting strains and stresses into
Hamilton’s variational principle, we get the
elementary governing equation of motion as
follows:

[Me]{qe} +[Ke]{qe} :{Fe} (25)

where

[Me]=INTmNdA is the consistent mass
A

matrix,

[Ke]zj[B]T[D][B]dA is the element

stiffness matrix, and

{Fe} = f NTpdA is the nodal load vector.
A

In which
1 0 0 O 0
0O 1 0 O 0
0O 01 o 0
m=pt t2
0O O — 0
12
2
0O 0 O t—
L 12 ]

Transformation into the global coordinate
system can be obtained by

(M ]=[TT [M.][T]
[Ke]=[TT[K]IT]
ReI=[TT (R}

where [T] is the local-global

transformation matrix.

Assembling the elements, we get the final
governing equation of motion:

[Me J{t} +[Ke J{a} = {Fe} 26)

For free harmonic vibrations and
considering the n™ mode, Eq. (26) can be

written as
([Ke]-of[Mc]){a} =0

where ®, is the natural frequency of mode n.
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5. NUMERCIAL EXAMPLES AND RESULTS

5.1. Comparison study

In order to verify the accuracy of the

present  solutions, the non-dimensional
frequencies of the FG plate, and the cylindrical,
spherical and hyperbolic shell panels were
calculated by the analytical (FSDT) and finite
element (FEM) models. It should be noted that
the doubly-curved shallow shell can be flexibly
degenerated into the different structures by

setting these quantities.

a b
e —=—=0 for the plate structures;
R, R,
;— =0 for the cylindrical panel (CYL);
a b .
e — =—=0 for the spherical panel (SPH);
R, R,
b a
—=——=%0 for the hyperbolic
R, R,

paraboloidal panel (HYP).

Based on Reddy & Chin (1998), the
material properties used in the present study
are listed in Table 1.

Example 1:

The non-dimensional frequencies  (

le(oha/pc/Ec) of the FG plate and shells

under ambient temperatures were calculated as
shown in Table 2, and these obtained results
were compared with Matsunaga’s (2008) using
the method of power series expansion of
displacement components. The geometrical
parameters of the simply supported doubly-
curved shell panel were: a/b = 1 and a/h = 10.
The FG structures were made from a mixture of
ceramic (Al,O,) and metal (Al). The temperature
independent properties of these materials were
as follows

- Ceramic-Al,O5: E, = 380 GPa; p, = 3800
kg/m?;v=10.3

- Metal (Al): E,, = 70 GPa; p,, = 2702 kg/m?;
v=0.3
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Table 1. Temperature-dependent coefficients for ceramic and metal

Material Properties Po P Py P, Ps
SizNy E. (Pa) 3.4843E+11 0 -3.07E+04  2.16E+07 -8.946E-11
ac (1/K) 5.8723E-06 0 9.095E-04 0 0
K (W/m K) 13.723 0 -1.032E-03  5.466E-07 -7.876E-11
Ve 0.24 0 0 0 0
P, (kg/m®) 2370 0 0 0 0
SUS304 Em (Pa) 2.0104E+11 0 3.079E-04  -6.53E-07 0
am (1/K) 1.233E-05 0 8.086E-04 0 0
Km (W/m K) 15.379 0 -1.264E-03  2.09E-06  -7.223E-10
Vim 0.3262 0 -2.002E-04 3.797E-07 0
P (kg/m?) 8166 0 0 0 0

Table 2. Comparison of non-dimensional frequencies
for the FG plates and shells under ambient temperatures

Volume fraction exponent p

Structure Source
p=0 p=0.5 p=1 p=4 p=10

Plate Matsunaga (2008) 0.0577 0.0492 0.0443 0.0381 0.0364
(a/Rx = b/Ry = 0)

Present (Analytical) 0.0577 0.0490 0.0442 0.0382 0.0366

Present (FEM) 0.0576 0.0490 0.0442 0.0382 0.0365

Difference ? (%) 0.17 0.41 0.23 0.26 0.27
Cylindrical shell panel Matsunaga (2008) 0.0622 0.0535 0.0485 0.0413 0.0390
(a/Rx = 0; b/Ry = 0.5)

Present (Analytical) 0.0617 0.0527 0.0477 0.0407 0.0385

Present (FEM) 0.0630 0.0539 0.0489 0.0418 0.0395

Difference ? (%) 1.29 0.75 0.82 1.21 1.28
Spherical shell panel Matsunaga (2008) 0.0751 0.0657 0.0600 0.0503 0.0464
(a/Rx = b/Ry = 0.5)

Present (Analytical) 0.0746 0.0646 0.0588 0.0491 0.0455

Present (FEM) 0.0761 0.0661 0.0603 0.0507 0.0469

Difference (%) 1.33 0.61 0.50 0.80 1.08
Hyperbolic paraboloidal shell panel ~ Matsunaga (2008) 0.0563 0.0479 0.0432 0.0372 0.0355
(a/Rx = 0.5; b/Ry = - a/Rx)

Present (Analytical) 0.0548 0.0465 0.0420 0.0363 0.0347

Present (FEM) 0.0581 0.0494 0.0446 0.0385 0.0369

Difference ? (%) 3.16 3.05 3.34 3.61 3.91

Note: * Difference * = 100%[€,(Matsunaga (2008))-Q,(Present (FEM))]

As shown in Table 2, the present results The geometrical parameters of the FG plate
obtained by the two solutions above agree well in the thermal environment were considered: h
with those used in comparison. =0.025 m; a/b=1; a= 0.2 m; and Poisson’s ratio

Example 2: v was taken to be a constant 0.28. The
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Table 3. Comparison of non-dimensional frequencies Q,

for a simply supported Si;N,/SUS304 square plate with different values

of the volume fraction index in a thermal environment

(m, n)
o] Source

1,1) 1,2 2,2

0 Shen and Wang (2012) 12.424 29.192 44.245

Present (FSDT) 12.440 29.096 43.974

Present (FEM) 12.207 28.560 43.156
Difference ° (%) 1.75 2.16 2.46

0.5 Shen and Wang (2012) 8.607 20.214 30.633

Present (FSDT) 8.576 20.038 30.275

Present (FEM) 8.417 19.689 29.748
Difference ° (%) 2.21 2.60 2.89

1 Shen and Wang (2012) 7.556 17.726 26.842

Present (FSDT) 7.520 17.567 26.537

Present (FEM) 7.383 17.270 26.091
Difference ® (%) 2.28 2.57 2.80

2 Shen and Wang (2012) 6.785 15.877 23.994

Present (FSDT) 6.754 15.770 23.811

Present (FEM) 6.636 15.515 23.429
Difference ° (%) 2.19 2.28 2.35

10 Shen and Wang (2012) 5.878 13.708 20.660

Present (FSDT) 5.846 13.649 20.602

Present (FEM) 5.761 13.459 20.313
Difference ° (%) 1.99 1.81 1.68

Note: * Difference b = 100%[92(Shen&Wang (2012))-Q,(Present (FEM))]

temperature on the top and bottom surfaces of
the plate were assumed to be T, = 400K and T,,
= 300K, respectively.

The effective material properties for the
selected FGMs are listed in Table 1. The non-
dimensional frequency for a Si;N,/SUS304 plate
were calculated and compared with those from
Shen and Wang’s (2012) in Table 3, in which

Qf@(az/h)\/p[)m (1—\/2)/E0m

and po,, and E;,, were the reference values of

p, and E  at T, = 300K. It can be seen clearly
that the differences of the non-dimensional
frequencies of the two present solutions
(Analytical and FEM) match well with those of
Shen and Wang (2012).

1418

Thus, Table 2 and Table 3 show that the
numerical results obtained in this paper are
highly reliable.

In the next section, the investigations
presented used both the analytical and numerical
results to analyze some parametric studies on the
free vibration of the FG plate and doubly-curved
shell panels in a thermal environment. The
boundary condition was simple support for all
and the

expansion coefficient of the materials were

cases. Young’s modulus thermal

assumed to be temperature dependent and listed
in Table 1, in which the metal was SUS304 and
the ceramic was Si;N,. Poisson’s ratio v was
taken to be a constant 0.28. The non-dimensional
natural used

frequency was
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Q,=100.0.h.\/p,./E,. , and p,.and E,, were the

reference values of p, and E_ at T, = 300K.

5.2. Parametric study

5.2.1. Effect of the temperature on the non-

dimensional fundamental frequencies

Figure 2 depicts the variability of the non-

dimensional fundamental frequencies for the FG

1.80==r=p=r=s T = (T p——— [ o [T S . T |_f_|
1.7

>

% . —&— PJate (Analytical)

gL =+-0—*- Plate (FEM)

£ 15 —®— CYL (Analytical)

g === CYL (FEM)

g 14 —+— SPH (Analytical)

§ == SPH (FEM)

E 13 —&— HYP (Analytical)

g =-=q-:- HYP (FEM)
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cylindrical panel and the spherical panel under

a thermal environment. The geometric
properties were assumed to be a/b = 1; a/h = 20;
p =1; T, = 300K, and T, was variable, and with
plate (a/R, = b/R, = 0), cylindrical shell (a/R, = 0;
b/R, = 0.5), spherical shell (a/R, = b/R, = 0.5),
and hyperbolic paraboloidal shell (a/R, = 0.5; b/R,
=-a/R).

According to the Fig. 2, the

dimensional fundamental frequencies of the

non-

plate and panels decreased moderately when
the temperature of the ceramic surface (T,
increased. The reason for the reduction of the
non-dimensional fundamental frequencies can
be explained by the fact that the stiffness of the
shell panel decreased dramatically when the
temperature increased.

5.2.2. Effect of the power law index on the

natural fundamental frequency

In order to study the effect of the volume

fraction index p on the non-dimensional
fundamental frequency of the FG plate and
shell panels, for an example, the geometric
of the shell
temperature were denoted as a/b = 1, a’/h = 20,
T., = 300K, and T, = 400K. The side to radius
ratio was set as follows: for the plate: a/R, = b/R,
= 0, for the cylindrical panel (CYL): a/R, = 0;
b/R, = 0.5, for thespherical panel: (SPH): a/R, =
b/R, = 0.5, and for the hyperbolic paraboloidal
panel (HYP): a/R, = 0.5; b/R, = - a/R,.

Fig. 3 shows the results that as the volume

properties panels and the

fraction index (p) incrementally increased, the

non-dimensional fundamental frequency
reduced dramatically for all structures of the
plate and shell panels. The reason for this can
be explained in that when the volume fraction
index (p) increased, the ceramic constituent of
the material reduced, therefore, the stiffness of
the shell panels decreased. As a consequence,
the non-dimensional fundamental frequency
also decreased. Moreover, the results depicted
in Fig. 3 imply an important aspect for FGMs
having their properties inbetween the two

extreme limits of metal and ceramic.
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5.2.3. Effect of thickness on the natural
fundamental frequencies

In this section, FG shell panels with a/b = 1
and p = 1 were considered to study the effect of
the side-to-thickness ratio (varying a/h from 20
to 200) on the non-dimensional fundamental
frequencies under the influence of a
temperature field of T,, = 300 K and T, = 400 K.
The geometrical parameters of the shell panels
were: with the cylindrical panel (CYL) a/R, = 0,
b/R, = 0.5; the spherical panel (SPH) a/R, = b/R,
= 0.5, and the hyperbolic paraboloidal panel
(HYP) (a/R, = 0.5; b/R, = - a/R,). The results are
shown in the Fig. 4.

It can be observed from Fig. 4 that when
the side-to-thickness ratio (a/h) increased, the
non-dimensional fundamental frequency of the
present structures decreased. The explanation
for this is that when the ratio a/h increased, the
shell panel became thinner, thus, the stiffness
of the shell decreased. This means that the non-
dimensional fundamental frequency of the shell
panel also decreased.

From Figs. 2-4, it can be seen that the non-
dimensional fundamental frequencies of the
spherical panels were always higher than those
of the
paraboloidal panels. This leads one to believe

cylindrical panels and hyperbolic

that the stiffness of the spherical panel was the
highest of the all considered structures.

6. CONCLUSION

Based on the first-order shear deformation

theory, an analytical solution and finite
element models using a  nine-noded
isoparametric  quadratic = element  were

performed for the free vibration analysis of
simply supported functionally graded plate and
shell panels, namely, cylindrical, spherical and
hyperbolic paraboloid. It is obvious that the
results obtained are in good agreement with
those of previously described methods and
solutions. According to this investigation, the
results presented in the figures reveal the
following:
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- The
frequencies of the plate and shell panels

non-dimensional fundamental
decreased with increases of the temperature
field (T,), volume fraction index (p) and side-to-
thickness ratio (a/h);

- The
frequencies of the spherical panel were the
highest of all considered structures.

non-dimensional fundamental
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