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ABSTRACT 

In this paper, theoretical formulation, Navier’s solutions, and finite element models based on the first-order shear 

deformation shell theory are presented for the free vibration analysis of functionally graded doubly-curved shallow 

shell panels including thermal effects. The temperature field was considered to have a uniform distribution over the 

shell surface and varied in the thickness direction only. The material properties were assumed to be temperature-

dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume 

fractions of the constituents. All four edges of the shell panels were assumed to be simply supported. Comparisons 

reveal that the numerical results obtained from the proposed method agree well with those available in the literature. 

The effects of the side-to-thickness ratio (a/h), temperature fields (Tc), and volume fraction distribution (p) on the 

natural frequencies of the functionally graded doubly-curved shallow shell panels were also investigated in the 

present study. 

Keywords: Functionally graded materials (FGM), free vibration analysis, FSDT, FEM, thermal environment, 

doubly-curved shells. 

Phân tích dao động riêng vỏ thoải hai độ cong  
có cơ tính biến thiên kể đến ảnh hưởng của nhiệt độ 

TÓM TẮT 

Bài báo trình bày lời giải giải tích và mô hình phần tử hữu hạn trên cơ sở lý thuyết vỏ bậc nhất (5 ẩn số chuyển 

vị) cho  ài toán phân tích dao động riêng vỏ thoải hai độ cong có cơ tính  iến thiên và có xét đến ảnh hưởng của 

nhiệt độ. Trường nhiệt độ được xét đến là phân bố đều trên các bề mặt vỏ và chỉ biến thiên theo phương chiều dày 

vỏ. Các cơ tính của vật liệu FGM được giả thiết phụ thuộc vào nhiệt độ và thay đổi dọc theo phương chiều dày với 

quy luật của hàm lũy thừa. Các đối tượng vỏ được khảo sát với điều kiện biên tựa khớp trên tất cả các cạnh. Kết quả 

số đã được kiểm chứng với kết quả của các tác giả khác cho thấy sự tương đồng cũng như độ tin cậy của hai lời giải 

đề xuất trong nghiên cứu này. Mặt khác, ảnh hưởng của tỉ số kích thước cạnh/chiều dày vỏ (a/h), trường nhiệt độ 

(Tc) và chỉ số tỉ lệ thể tích vật liệu (p) đến giá trị tần số dao động riêng của vỏ thoải hai độ cong cũng đã được khảo 

sát thông qua các ví dụ số. 

Từ khóa: Vật liệu có cơ tính  iến thiên (FGM), phân tích dao động riêng, lý thuyết biến dạng cắt bậc nhất 

(FSDT), phương pháp phần tử hữu hạn, môi trường nhiệt, vỏ hai độ cong. 

 

1. INTRODUCTION 

 Functionally graded materials (FGMs) 

are frequently used in engineering 

communities, especially in applications for 

high-temperature environments such as 

nuclear reactors, space planes, and chemical 

plants. Typical FGMs are made from a mixture 

of ceramic and metal, or a combination of 

different metals. The ceramic constituent 
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provides high-temperature resistance due to its 

low thermal conductivity. The ductile metal 

constituent, on the other hand, prevents 

fractures caused by stresses due to a high-

temperature gradient over a very short period of 

time. There are numerous studies on the 

thermo-mechanical characteristics of FGM 

structures which have been carried out to date. 

Generally, the studies of static and dynamic 

analyses of functionally graded shells working in 

thermal environments are well-established 

throughout the literature. Kadoli and Ganesan 

(2006) presented a linear thermal buckling and 

free vibration analyses for functionally graded 

cylindrical shells with clamped-clamped 

boundary conditions and with temperature-

dependent material properties. The first-order 

shear deformation theory along with the Fourier 

series expansion of the displacement variables in 

the circumferential direction were used to model 

the FGM shell. Shen and Wang (2010) 

investigated the thermoelastic vibration and 

buckling characteristics of the functionally 

graded piezoelectric cylindrical shell using the 

Maxwell equation with a quadratic variation of 

the electric potential along the thickness 

direction of the cylindrical shells and the first-

order shear deformation theory. Based on Loveēs 

shell theory and the von Karman-Donnell-type of 

kinematic nonlinearity, free vibration analysis of 

simply supported FG cylindrical shells for four 

sets of in-plane boundary conditions was 

performed by Haddadpour et al. (2007) using 

Galerkinēs method. The free vibration analysis of 

rotating functionally graded (FG) cylindrical 

shells subjected to thermal environment was 

investigated based on the first order shear 

deformation theory of shells and was reported in 

the work of Malekzadeh and Heydarpour (2012). 

Pradyumna and Bandyopadhyay (2010) 

investigated the free vibration and buckling 

behaviors of functionally graded singly and 

doubly curved shell panels in thermal 

environments. A higher-order shear deformation 

theory was used and the shell panels were 

subjected to a temperature field. Bhangale et al. 

(2006) used the first-order shear deformation 

theory to study the thermal buckling and 

vibration behaviors of truncated FGM conical 

shells in a high-temperature environment by the 

finite element method. Temperature-dependent 

material properties were considered to carry out 

linear thermal buckling and free vibration 

analyses. Zhao and Liew (2009) studied the static 

response and free vibration characteristics of 

metal and ceramic functionally graded shells 

using the element-free kp-Ritz method. The 

displacement field was expressed in terms of a 

set of mesh-free kernel particle functions 

according to Sanderēs first-order shear 

deformation shell theory. Wattanasakulpong and 

Chaikittiratana (2015) presented an 

investigation of free vibration of stiffened 

functionally graded doubly curved shallow shells 

under a thermal environment. Two types of 

temperature icreases, linear and nonlinear, were 

considered throughout the shell thickness. 

Alijani et al. (2011) studied geometrically 

nonlinear vibrations of functionally graded 

doubly curved shells subjected to thermal 

variations and harmonic excitation via the 

doubly-modal energy approach.  

Recently, there have been many local 

authors who have studied this issue. Quan and 

Duc (2016), using Reddyēs third-order shear 

deformation shell theory, investigated nonlinear 

vibration and dynamic responses of imperfect 

functionally graded materials (FGM) using 

thick double-curved shallow shells resting on 

elastic foundations in thermal environments. 

Duc et al. (2017) proposed an analytical 

approach by using the Galerkin method to study 

the nonlinear dynamics and vibration of S-FGM 

spherical shallow shells with different types of 

boundary conditions resting on EF in a thermal 

environment. A third-order shear deformation 

theory was used by Dong and Dung (2017) for 

the nonlinear vibration analysis of stiffened 

functionally graded material, sandwiched 

doubly, curved shallow shells with four material 

models. It can be seen clearly that most of these 

studies refer to a nonlinear analysis of the 

doubly-curved shells by using an analytical 

approach. 



Free vibration analysis of functionally graded doubly-curved shallow shells including a thermal effect 

1412 

However, studies on the free vibration 

analysis of FGM doubly-curved shell panels in a 

thermal environment are rare in the literature. 

Thus, for study purposes in this paper, an 

analytical solution and finite element model 

based on the first-order shear deformation 

theory were used for the free vibration analysis 

of three shell panels, namely, cylindrical (CYL), 

spherical (SPH), and hyperbolic paraboloidal 

(HYP) in thermal a environment.   

2. THEORITICAL FORMULATION 

In the present study, the shell panels are 

denoted length a, width b, and thickness h, and 

are referred to using an orthogonal curvilinear 

coordinate system (x, y, z), as shown in Fig. 1. 

Rx and Ry are the radius of principal curvatures 

of the middle surface in the x-direction and y-

direction, respectively. The elastic material 

properties vary throughout the shell thickness 

according to the volume fractions of the 

constituents. The top surface (z = h/2) of the 

shell is assumed ceramic-rich, whereas the 

bottom surface (z = - h/2) is metal rich. The 

effective properties of the functionally graded 

material at any thickness coordinate z can be 

expressed following a power law distribution as 

   
p

c m m

z 1
P z,T P P P

h 2

 
    

 
 (1) 

where p is the volume fraction exponent, 

and Pm and Pc represent the properties of the 

metal and ceramic, respectively. The properties 

of the temperature-dependent constituents of 

the constituent materials are the same as 

presented by Yang and Shen (2001): 

   1 2 3

0 1 1 2 3P T P P T 1 PT P T P T

     (2) 

where 0 1 1 2P , P , P , P  and 3P  are the 

coefficients of temperature T(K) and are unique 

to the constituent materials. 

In the present analysis, Youngēs modulus 

E and thermal expansion coefficient α are 

assumed to be temperature-dependent, 

whereas the mass density ρ and thermal 

conductivity   are independent to the 

temperature. The Poisson ratio ν is assumed 

to be constant [10]:  

       
p

m c m

z 1
E z, T E T E T E T ;

h 2

 
       

   

   
p

m c m

z 1
z ;

h 2

 
        

 
 

(3) 

       
p

m c m

z 1
z, T T T T ;

h 2

 
         

   

   
p

m c m

z 1
z .

h 2

 
       

 
 

We assumed that the temperature variation 

occurs in the thickness direction only and the 

one-dimensional temperature field is constant 

in the XY plane of the shell. In such a case, the 

temperature distribution throughout the 

thickness of the FGM shell can be obtained by 

solving a steady-state heat transfer equation as 

follows: 

d dT
(z) 0

dZ dZ

 
   

 
 (4) 

This equation is solved by imposing 

boundary conditions of T =  Tc at Z = h/2 and T = 

Tm at Z = -h/2. The solution of this equation, by 

means of a polynomial series, is [11]: 

     m c mT z T T T z      (5) with

 

 
   

     

2
p 1 2p 1cm cm

2

m m

3 4 5
3p 1 4p 1 5p 1cm cm cm

3 4 5

m m m

X X X
p 1 2p 11

z
C

X X X
3p 1 4p 1 5p 1

 

  

  
  

     
   
   

       

 (6a) 
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         

cm c m

2 3 4 5

cm cm cm cm cm

2 3 4 5

m m m m m

z 1
X ;    

h 2

C 1
p 1 2p 1 3p 1 4p 1 5p 1

  
       
 


          

          

 (6b) 

 

Figure 1. A functionally graded doubly curved shallow shell 

According to the first-order shear 

deformation shell theory, the displacement field 

can be expressed as 

     

     

   

0 x

0 y

0

u x, y,z, t u x, y, t z x, y, t

v x, y,z, t v x, y, t z x, y, t

w x, y,z, t w x, y, t

  

  


       

(7) 

where u0, v0, and w0 are the displacements 

at the mid-surface of the shell in the x, y, and z 

directions, respectively, and x  and y  

represent the rotations of the transverse normal 

about the x and y axes, respectively. 

The linear strains are defined as: 

0 00
yx x x 0

yyz0 yz

y y y 0
xz0 xz 0 0

xxy xy xy

x

w v

y R
z ;    

w u

x R

 
                   

                 
                       

 (8) 

where 

0 0 00 0 0 0 0 0
x y xy

x y

y yx x
x y xy

u w v w u v
; ;

x R y R y x

; ;
x y y x

   
        

   

  
      

   

 (9) 

Then, the linear constitutive relations are expressed as 

11 12xx x

12 22yy y

66xy xy

44yz yz

55xz xz

Q Q 0 0 0

Q Q 0 0 0

0 0 Q 0 0

0 0 0 Q 0

0 0 0 0 Q

     
    

 
       
     
         
         

   (10) 

where 

h

x Ry

Rx

y

a

b

z
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 
11 22 12 44 55 662 2

E(z,T) E(z,T) E(z,T)
Q Q ;Q ;Q Q Q

1 1 2 1


     

   
 (11) 

The total in-plane force resultants, total moment resultants, and transverse force resultants are 

defined by: 

xx xx xx xxh/2 h/2 h/2
yz yz

yy yy yy yy s

h/2 h/2 h/2xz xz

xy xy xy xy

N M z
Q

N dz; M z dz; k dz
Q

N M z  

        
              

               
                     

    (12) 

0
xx 11 12 11 12 x

0
yy 12 22 12 22 y

0
xy 66 66 44xy yz

s

xx 11 12 11 12 55x xz

yy 12 22 12 22 y

xy 66 66 xy

N A A 0 B B 0

N A A 0 B B 0

N 0 0 A 0 0 B A 0Q
; k

M B B 0 D D 0 0 AQ

M B B 0 D D 0

M 0 0 B 0 0 D

    
    
    

          
       

      
    
    

        

0

yz

0

xz

  
  
   

  

 where 

     

 

h/2

2

i j i j i j i j

h /2

h/2

i j i j

h /2

A ,B ,D Q 1,z,z dz;    i j 11,  12,  21,  22,  66

A Q dz;                        i j 44,  55






 





 







 (13) 

and ks denotes the transverse shear correction coefficient which is taken to be ks = 5/6. The 

temperature is assumed to only vary along the thickness direction of the shell, thus, xy 0  . The 

thermoelastic constitutive for the FG shell in the x, y directions are expressed as follows: 

       T T

xx yy

E z,T z,T
T

1


     


 (14) 

where,   0T T z T    is the temperature increase from the reference temperature 0T  at which 

there are no thermal strains. 

The equations of motion using the Hamiltonēs principle can be written as (Wattanasakulpong 

and Chaikittiratana, 2015): 

2 2 22 2 2
xy T T T T0 0 0xx xz x x x

11 22 11 22 0 12 2 2 2 2 2

x

N u u uN Q
A A B B I I

x y R x y x y t t

         
       

       
 

2 2 22 2 2
xy yy yz y y yT T T T0 0 0

11 22 11 22 0 12 2 2 2 2 2

y

N N Q v v v
A A B B I I

x y R x y x y t t

         
       

       
 

2 2 2
yz yy T T0 0 0xz xx

11 22 02 2 2

x y

Q N w w wQ N
A A I

x y R R x y t

   
     

    
 (15) 

2 2 22 2 2
yy T T T T0 0 0xx x x x

xz 11 22 11 22 1 22 2 2 2 2 2

M u u uM
Q B B D D I I

x y x y x y t t

         
       

       
 

2 2 22 2 2
xy yy y y yT T T T0 0 0

yz 11 22 11 22 1 22 2 2 2 2 2

M M v v v
Q B B D D I I

x y x y x y t t

         
       

       
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where, 

h/2

T T T (T) 2

11 11 11 xx

h/2

T T T T T T

22 11 22 11 22 11

h/2

i

i

h /2

(A ,B ,D ) (1,  z,  z ) .dz

A A ;B B ;D D

I (z) .z .dz    i= (0 ,  1 ,  2 )






 




  

  






   

(16) 

By substituting the force resultants, total 

moment resultants, and transverse force 

resultants in Eq. (15) with those of Eq. (12), the 

governing equations for the FG doubly curved 

shell are obtained in terms of the displacement 

variables of Eqs. (15). 

3. ANALYTICAL SOLUTION 

Based on Navierēs approach, the 

displacement unknowns satisfying the simply 

supported boundary conditions for the FG 

doubly-curved shell panel can be expressed in 

the following forms: 

i t

mn0

i t

mn0

i t

0 mn

m 1 n 1 i t
x xmn

i t
y ymn

u e cos ( x)s in ( y)u (x, y, t)

v e s in ( x)cos ( y)v (x, y, t)

w (x, y, t) w e s in ( x)s in ( y)

(x, y, t) e cos ( x)s in ( y)

(x, y, t) e s in ( x)cos ( y)





 


  



   
  

   
   

     
         
         


(17) 

where mn mn mn xmn ymnu ,  v ,  w ,  ,     are the 

unknown coefficients; i is the imaginary unit (i2 

= -1);   is the natural frequency; 

 

A simplified form of the equation of motion 

can be obtained by substituting Eq. (17) into the 

terms of displacement variables of Eq. (15) to 

obtain 

 (18) 

where 

 
5x5

K  and  
5x5

M  are the stiffness matrix 

and the mass matrix, respectively. i jK  and i jM  

are the elements which can be obtained by the 

Symbolic Toolbox using the Matlab software. 

   
T

mn mn mn xmn ymn5x1
u  v w        

The natural frequency, mn , can be 

obtained by solving the above eigenvalue type 

equation (Eq. 18). With each pair of m and n, there is 

a corresponsive unique mode shape of the natural 

frequency for the FG doubly-curved shell. 

4. FINITE ELEMENT MODEL 

When the nine-nodded isoparametric 

quadratic element is adopted and the 

interpolation formulated, the spatial 

coordinates are: 

9 9

i i i i

i 1 i 1

x N x  ;  y N y
 

     (19) 

where iN  is the quadratic shape function. 

The displacement vector  u  at any point 

(x, y, 0) on the mid-plane is defined in terms of 

nodal variables via the shape function matrix 

 N  as 

    iu N u         (20) 

where  
T

0 0 0 x yu u v w       (21) 

In which  iu  is the nodal displacement 

vector of element i. From equations (20) and 

(21) the reduced strain vector    can be 

written as 

    iB u       (22) 

where         1 2 9B B B .. . B       (23) 

with  

i,x i,x

m b

i i,y i i,y

i,y i,x i,y i,x

i,x is

i

i,y i

N 0 0 0 0 0 0 N 0 0

B 0 N 0 0 0 ;  B 0 0 0 0 N ;  

N N 0 0 0 0 0 0 N N

0 0 N N 0
B

0 0 N 0 N

   
   

          
   
   

 
     

 

   (24) 

α=mπ/a;β=nπ/b;

       2

5 1 5 15 5 5 5
K M 0

  
  
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In which 
i,xN  and i,yN  are the derivatives 

of the shape functions in the x and y directions, 

respectively (i = 1, 2, Ė, 9). 

       Substituting strains and stresses into 

Hamiltonēs variational principle, we get the 

elementary governing equation of motion as 

follows: 

       e e e e eM q K q F   (25) 

where 

  T

e

A

M N mNdA   is the consistent mass 

matrix, 

      
T

e

A

K B D B dA   is the element 

stiffness matrix, and  

  T

e

A

F N pdA   is the nodal load vector.  

 In which  

 
2

2

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

m t t
0 0 0 0

12

t
0 0 0 0

12

 
 
 
 
  
 
 
 
 
  

 

Transformation into the global coordinate 

system can be obtained by 

     
Te

G eM T M T     

     
Te

G eK T K T     

      
Te

G eF T F  

where  T  is the local-global 

transformation matrix. 

Assembling the elements, we get the final 

governing equation of motion: 

       G G GM q K q F   (26) 

For free harmonic vibrations and 

considering the nth mode, Eq. (26) can be 

written as  

     2

G n GK M q 0 

 
where n is the natural frequency of mode n. 

5. NUMERCIAL EXAMPLES AND RESULTS 

5.1. Comparison study 

 In order to verify the accuracy of the 

present solutions, the non-dimensional 

frequencies of the FG plate, and the cylindrical, 

spherical and hyperbolic shell panels were 

calculated by the analytical (FSDT) and finite 

element (FEM) models. It should be noted that 

the doubly-curved shallow shell can be flexibly 

degenerated into the different structures by 

setting these quantities. 

 
x y

a b
0

R R
   for the plate structures;  

x

a
0

R
  for the cylindrical panel (CYL);  

 
x y

a b
0

R R
   for the spherical panel (SPH); 

y x

b a
0

R R
    for the hyperbolic 

paraboloidal panel (HYP). 

Based on Reddy & Chin (1998), the 

material properties used in the present study 

are listed in Table 1. 

Example 1:  

The non-dimensional frequencies (

1 c ch / E   ) of the FG plate and shells 

under ambient temperatures were calculated as 

shown in Table 2, and these obtained results 

were compared with Matsunagaēs (2008) using 

the method of power series expansion of 

displacement components. The geometrical 

parameters of the simply supported doubly-

curved shell panel were: a/b = 1 and a/h = 10. 

The FG structures were made from a mixture of 

ceramic (Al2O3) and metal (Al). The temperature 

independent properties of these materials were 

as follows  

- Ceramic-Al2O3: Ec = 380 GPa; ρc = 3800 

kg/m3; ν = 0.3 

- Metal (Al): Em = 70 GPa; ρm = 2702 kg/m3; 

ν = 0.3 
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Table 1. Temperature-dependent coefficients for ceramic and metal 

Material Properties P0 P-1 P1 P2 P3 

Si3N4 Ec (Pa) 3.4843E+11 0 -3.07E+04 2.16E+07 -8.946E-11 

αc (1/K) 5.8723E-06 0 9.095E-04 0 0 

Kc (W/m K) 13.723 0 -1.032E-03 5.466E-07 -7.876E-11 

νc 0.24 0 0 0 0 

c (kg/m
3
) 2370 0 0 0 0 

SUS304 Em (Pa) 2.0104E+11 0 3.079E-04 -6.53E-07 0 

αm (1/K) 1.233E-05 0 8.086E-04 0 0 

Km (W/m K) 15.379 0 -1.264E-03 2.09E-06 -7.223E-10 

νm 0.3262 0 -2.002E-04 3.797E-07 0 

m (kg/m
3
) 8166 0 0 0 0 

Table 2. Comparison of non-dimensional frequencies  

for the FG plates and shells under ambient temperatures 

Structure Source 
Volume fraction exponent p 

p = 0 p = 0.5 p = 1 p = 4 p = 10 

Plate  
(a/Rx = b/Ry = 0) 

Matsunaga (2008)                   0.0577 0.0492 0.0443 0.0381 0.0364 

Present (Analytical)   0.0577 0.0490 0.0442 0.0382 0.0366 

Present (FEM)           0.0576 0.0490 0.0442 0.0382 0.0365 

Difference 
a
 (%) 0.17 0.41 0.23 0.26 0.27 

Cylindrical shell panel  
(a/Rx = 0; b/Ry = 0.5) 

Matsunaga (2008)                   0.0622 0.0535 0.0485 0.0413 0.0390 

Present (Analytical)   0.0617 0.0527 0.0477 0.0407 0.0385 

Present (FEM)           0.0630 0.0539 0.0489 0.0418 0.0395 

Difference 
a
 (%) 1.29 0.75 0.82 1.21 1.28 

Spherical shell panel  
(a/Rx = b/Ry = 0.5) 

Matsunaga (2008)                   0.0751 0.0657 0.0600 0.0503 0.0464 

Present (Analytical)   0.0746 0.0646 0.0588 0.0491 0.0455 

Present (FEM)           0.0761 0.0661 0.0603 0.0507 0.0469 

Difference 
a
 (%) 1.33 0.61 0.50 0.80 1.08 

Hyperbolic paraboloidal shell panel 
(a/Rx = 0.5; b/Ry = - a/Rx) 

Matsunaga (2008)                   0.0563 0.0479 0.0432 0.0372 0.0355 

Present (Analytical)   0.0548 0.0465 0.0420 0.0363 0.0347 

Present (FEM)           0.0581 0.0494 0.0446 0.0385 0.0369 

Difference 
a
 (%) 3.16 3.05 3.34 3.61 3.91 

Note: * Difference a =  1 1100% ( Matsunaga (2008))- (Pr esent (FEM))   

As shown in Table 2, the present results 

obtained by the two solutions above agree well 

with those used in comparison.   

Example 2:  

The geometrical parameters of the FG plate 

in the thermal environment were considered: h 

= 0.025 m; a/b = 1; a = 0.2 m; and Poissonēs ratio 

  was taken to be a constant 0.28. The 
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Table 3. Comparison of non-dimensional frequencies 2Ω   

for a simply supported Si3N4/SUS304 square plate with different values  

of the volume fraction index in a thermal environment 

p Source  
(m, n) 

(1, 1) (1, 2) (2, 2) 

0 Shen and Wang (2012) 12.424 29.192 44.245 

Present (FSDT) 12.440 29.096 43.974 

Present (FEM) 12.207 28.560 43.156 

Difference 
b
 (%) 1.75 2.16 2.46 

0.5 Shen and Wang (2012) 8.607 20.214 30.633 

Present (FSDT) 8.576 20.038 30.275 

Present (FEM) 8.417 19.689 29.748 

Difference 
b
 (%) 2.21 2.60 2.89 

1 Shen and Wang (2012) 7.556 17.726 26.842 

Present (FSDT) 7.520 17.567 26.537 

Present (FEM) 7.383 17.270 26.091 

Difference 
b
 (%) 2.28 2.57 2.80 

2 Shen and Wang (2012) 6.785 15.877 23.994 

Present (FSDT) 6.754 15.770 23.811 

Present (FEM) 6.636 15.515 23.429 

Difference 
b
 (%) 2.19 2.28 2.35 

10 Shen and Wang (2012) 5.878 13.708 20.660 

Present (FSDT) 5.846 13.649 20.602 

Present (FEM) 5.761 13.459 20.313 

Difference 
b
 (%) 1.99 1.81 1.68 

Note: * Difference b =  2 2100% ( Shen&Wang (2012))- (Pr esent (FEM))   

temperature on the top and bottom surfaces of 

the plate were assumed to be Tc = 400K and Tm 

= 300K, respectively. 

 The effective material properties for the 

selected FGMs are listed in Table 1. The non-

dimensional frequency for a Si3N4/SUS304 plate 

were calculated and compared with those from 

Shen and Wangēs (2012) in Table 3, in which  

   2 2

2 0m 0mΩ =ω a /h ρ 1 /E  

and ρ0m and E0m were the reference values of 

ρm and Em at T0 = 300K. It can be seen clearly 

that the differences of the non-dimensional 

frequencies of the two present solutions 

(Analytical and FEM) match well with those of 

Shen and Wang (2012).  

Thus, Table 2 and Table 3 show that the 

numerical results obtained in this paper are 

highly reliable.  

In the next section, the investigations 

presented used both the analytical and numerical 

results to analyze some parametric studies on the 

free vibration of the FG plate and doubly-curved 

shell panels in a thermal environment. The 

boundary condition was simple support for all 

cases. Youngēs modulus and the thermal 

expansion coefficient of the materials were 

assumed to be temperature dependent and listed 

in Table 1, in which the metal was SUS304 and 

the ceramic was Si3N4. Poissonēs ratio   was 

taken to be a constant 0.28. The non-dimensional 

natural frequency used was 
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3 0c 0cΩ =100.ω.h. ρ /E , and ρ0c and E0c were the 

reference values of ρc and Ec at T0 = 300K. 

5.2. Parametric study 

5.2.1. Effect of the temperature on the non-

dimensional fundamental frequencies 

Figure 2 depicts the variability of the non-

dimensional fundamental frequencies for the FG 

 

Fig. 2. Effect of the temperature field on the fundamental frequencies  

of the FG shell panels 

 

Fig. 3. Effect of the volume fraction index p  

on the fundamental frequencies of the FG shell panels 
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cylindrical panel and the spherical panel under 

a thermal environment. The geometric 

properties were assumed to be a/b = 1; a/h = 20; 

p = 1; Tm = 300K, and Tc was variable, and with 

plate (a/Rx = b/Ry = 0), cylindrical shell (a/Rx = 0; 

b/Ry = 0.5), spherical shell (a/Rx = b/Ry = 0.5), 

and hyperbolic paraboloidal shell (a/Rx = 0.5; b/Ry 

= - a/Rx). 

According to the Fig. 2, the non-

dimensional fundamental frequencies of the 

plate and panels decreased moderately when 

the temperature of the ceramic surface (Tc) 

increased. The reason for the reduction of the 

non-dimensional fundamental frequencies can 

be explained by the fact that the stiffness of the 

shell panel decreased dramatically when the 

temperature increased. 

5.2.2. Effect of the power law index on the 

natural fundamental frequency 

In order to study the effect of the volume 

fraction index p on the non-dimensional 

fundamental frequency of the FG plate and 

shell panels, for an example, the geometric 

properties of the shell panels and the 

temperature were denoted as a/b = 1, a/h = 20, 

Tm = 300K, and Tc = 400K. The side to radius 

ratio was set as follows: for the plate: a/Rx = b/Ry 

= 0, for the cylindrical panel (CYL): a/Rx = 0; 

b/Ry = 0.5, for thespherical panel: (SPH): a/Rx = 

b/Ry = 0.5, and for the hyperbolic paraboloidal 

panel (HYP): a/Rx = 0.5; b/Ry = - a/Rx. 

Fig. 3 shows the results that as the volume 

fraction index (p) incrementally increased, the 

non-dimensional fundamental frequency 

reduced dramatically for all structures of the 

plate and shell panels. The reason for this can 

be explained in that when the volume fraction 

index (p) increased, the ceramic constituent of 

the material reduced, therefore, the stiffness of 

the shell panels decreased. As a consequence, 

the non-dimensional fundamental frequency 

also decreased. Moreover, the results depicted 

in Fig. 3 imply an important aspect for FGMs 

having their properties inbetween the two 

extreme limits of metal and ceramic.    

5.2.3. Effect of thickness on the natural 

fundamental frequencies 

In this section, FG shell panels with a/b = 1 

and p = 1 were considered to study the effect of 

the side-to-thickness ratio (varying a/h from 20 

to 200) on the non-dimensional fundamental 

frequencies under the influence of a 

temperature field of Tm = 300 K and Tc = 400 K. 

The geometrical parameters of the shell panels 

were: with the cylindrical panel (CYL) a/Rx = 0, 

b/Ry = 0.5; the spherical panel (SPH) a/Rx = b/Ry 

= 0.5, and the hyperbolic paraboloidal panel 

(HYP) (a/Rx = 0.5; b/Ry = - a/Rx). The results are 

shown in the Fig. 4.  

 It can be observed from Fig. 4 that when 

the side-to-thickness ratio (a/h) increased, the 

non-dimensional fundamental frequency of the 

present structures decreased. The explanation 

for this is that when the ratio a/h increased, the 

shell panel became thinner, thus, the stiffness 

of the shell decreased. This means that the non-

dimensional fundamental frequency of the shell 

panel also decreased.  

From Figs. 2-4, it can be seen that the non-

dimensional fundamental frequencies of the 

spherical panels were always higher than those 

of the cylindrical panels and hyperbolic 

paraboloidal panels. This leads one to believe 

that the stiffness of the spherical panel was the 

highest of the all considered structures. 

6. CONCLUSION 

Based on the first-order shear deformation 

theory, an analytical solution and finite 

element models using a nine-noded 

isoparametric quadratic element were 

performed for the free vibration analysis of 

simply supported functionally graded plate and 

shell panels, namely, cylindrical, spherical and 

hyperbolic paraboloid. It is obvious that the 

results obtained are in good agreement with 

those of previously described methods and 

solutions. According to this investigation, the 

results presented in the figures reveal the 

following: 
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Fig. 4. Effect of a/h ratio on the fundamental frequencies of the FG shell panels 

- The non-dimensional fundamental 

frequencies of the plate and shell panels 

decreased with increases of the temperature 

field (Tc), volume fraction index (p) and side-to-

thickness ratio (a/h); 

- The non-dimensional fundamental 

frequencies of the spherical panel were the 

highest of all considered structures.  
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