Date Received: 26-02-2025
Date Published: 21-03-2025
##submissions.doi##: https://doi.org/10.1234/s82tqz04
Views
Downloads
How to Cite:
Optimization of Saliva Sample Processing to Increase Sensitivity in Diagnosis of African Swine Fever
Keywords
African swine fever, real-time PCR, saliva samples, processing method
Abstract
African swine fever (ASF) is a dangerous infectious disease with a mortality rate of up to 100%. Collecting saliva samples for diagnosis to monitor ASF has many advantages, but the low viral load in saliva samples, it affects the sensitivity of diagnostic methods. This study improved the saliva sample processing to increase the sensitivity of the diagnosis method. Semi-alkaline proteinase (SAP) and Polyethylene glycol (PEG) were used to process saliva samples. The optimal volume ratio of SAP and PEG solutions to saliva samples was 1:3 and 1:0.4, respectively. The results of ASFV diagnosis from saliva samples after processing with SAP and PEG showed increased sensitivity of real-time PCR reaction. Of 12 field samples, 7/12 samples gave positive results after processing with SAP and PEG compared to only 4/12 positive samples when not processed with SAP and PEG. Thus, applying the saliva sample processing increased the sensitivity of the real-time PCR method in ASF diagnosis, promising to be a useful support tool for ASF surveillance.
References
Beemer O., Remmenga M., Gustafson L., Johnson K., Hsi D. & Antognoli M.C. (2019). Assessing the value of PCR assays in oral fluid samples for detecting African swine fever, classical swine fever, and foot-and-mouth disease in U.S. swine. PLOS ONE. 14(7): e0219532.
Czumbel L.M., Kiss S., Farkas N., Mandel I., Hegyi A., Nagy Á., Lohinai Z., Szakács Z., Hegyi P., Steward M.C. & Varga G. (2020). Saliva as a Candidate for COVID-19 Diagnostic Testing: A Meta-Analysis. Front Med (Lausanne). 7: 465.
Dixon L.K., Chapman D.A., Netherton C.L. & Upton C. (2013). African swine fever virus replication and genomics. Virus Res. 173(1): 3-14.
Gallardo C., Soler A., Nurmoja I., Cano-Gómez C., Cvetkova S., Frant M., Woźniakowski G., Simón A., Pérez C., Nieto R. & Arias M. (2021). Dynamics of African swine fever virus (ASFV) infection in domestic pigs infected with virulent, moderate virulent and attenuated genotype II ASFV European isolates. Transbound Emerg Dis. 68(5): 2826-2841.
Goonewardene K.B., Chung C.J., Goolia M., Blakemore L., Fabian A., Mohamed F., Nfon C., Clavijo A., Dodd K. A. & Ambagala A. (2021). Evaluation of oral fluid as an aggregate sample for early detection of African swine fever virus using four independent pen-based experimental studies. Transboundary and Emerging Diseases.
(5): 2867-2877.
Gregorio Torres I. (2020). GF-TADs Global Control of African Swine Fever. Presentation at the Webinar on African Swine Fever: An Unprecedented Global Threat - A Challenge to Livelihoods, Food Security and Biodiversity. Call for action. Retrieved from http://www.gf-tads.org/events/ events-detail/en/c/1152886/ on Aug 20, 2024.
Hata A., Hara-Yamamura H., Meuchi Y., Imai S. & Honda R. (2021). Detection of SARS-CoV-2 in wastewater in Japan during a Covid-19 outbreak. Sci Total Environ. 758: 143578.
Nguyễn Hưởng (2024). Tiêm vắc-xin phòng dịch tả lợn châu Phi đạt thấp, vì sao? Truy cập từ https://baobacgiang.vn/tiem-vac-xin-phong-dich-ta-lon-chau-phi-dat-thap-vi-sao-073127.bbg ngày 20/08/2024.
Joseph Chung C., Remmenga D.M., Mielke R.S., Branan M., Daniel Mihalca A., Balmos O.-M., Adrian Balaban Oglan D., Supeanu A. & Farkas A. (2024). Evaluation of Aggregate Oral Fluids for African Swine Fever Real-Time PCR Diagnostics Using Samples Collected on Romanian Farms with an Active Outbreak. Transboundary and Emerging Diseases. (1): 9142883.
Kumar M., Patel A. K., Shah A. V., Raval J., Rajpara N., Joshi M. & Joshi C.G. (2020). First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2. Sci Total Environ. 746: 141326.
Le V.P., Jeong D.G., Yoon S.W., Kwon H.M., Trinh T.B.N., Nguyen T.L., Bui T.T.N., Oh J., Kim J.B., Cheong K. M., Van Tuyen N., Bae E., Vu T.T.H., Yeom M., Na W. & Song D. (2019). Outbreak of African Swine Fever, Vietnam, 2019. Emerg Infect Dis. 25(7): 1433-1435.
Martínez-Miró S., Tecles F., Ramón M., Escribano D., Hernández F., Madrid J., Orengo J., Martínez-Subiela S., Manteca X. & Cerón J.J. (2016). Causes, consequences and biomarkers of stress in swine: an update. BMC Vet Res. 12(1): 171.
Nguyen-Thi T., Pham-Thi-Ngoc L., Nguyen-Ngoc Q., Dang-Xuan S., Lee H. S., Nguyen-Viet H., Padungtod P., Nguyen-Thu T., Nguyen-Thi T., Tran-Cong T. & Rich K.M. (2021). An Assessment of the Economic Impacts of the 2019 African Swine Fever Outbreaks in Vietnam. Front Vet Sci. 8: 686038.
Saitoh H. & Yamane N. (1999). Evaluation of a fully automated mycobacteria culture system, MB/BacT using a newly developed digestion-decontamination procedure, semi-alkaline protease-N-acetyl-L-cysteine-NaOH (SAP-NALC-NaOH) method. Rinsho Biseibutshu Jinsoku Shindan Kenkyukai Shi. 10(2): 103-10.
Sakashita K., Takeuchi R., Takeda K., Takamori M., Ito K., Igarashi Y., Hayashi E., Iguchi M., Ono M., Kashiyama T., Tachibana M., Miyakoshi J., Yano K., Sato Y., Yamamoto M., Murata K., Wada A., Chikamatsu K., Aono A., Takaki A., Nagai H., Yamane A., Kawashima M., Komatsu M., Nakaishi K., Watabe S. & Mitarai S. (2020). Ultrasensitive enzyme-linked immunosorbent assay for the detection of MPT64 secretory antigen to evaluate Mycobacterium tuberculosis viability in sputum. International Journal of Infectious Diseases. 96: 244-253.
Tignon M., Gallardo C., Iscaro C., Hutet E., Van Der Stede Y., Kolbasov D., De Mia G. M., Le Potier M. F., Bishop R. P., Arias M. & Koenen F. (2011). Development and inter-laboratory validation study of an improved new real-time PCR assay with internal control for detection and laboratory diagnosis of African swine fever virus. J Virol Methods. 178(1-2): 161-70.
Torii S., Furumai H. & Katayama H. (2021). Applicability of polyethylene glycol precipitation followed by acid guanidinium thiocyanate-phenol-chloroform extraction for the detection of SARS-CoV-2 RNA from municipal wastewater. Sci Total Environ. 756: 143067.
Patricia Del Vigna de Almeida, Ana Maria Trindade Grégio, Maria Angela Naval Machado, Antonio Adilson Soares de Lima, Luciana Reis Azevedo (2008). Saliva composition and functions: a comprehensive review. J Contemp Dent Pract. 9(3): 72-80.
Wang W.-H., Takeuchi R., Jain S.-H., Jiang Y.-H., Watanuki S., Ohtaki Y., Nakaishi K., Watabe S., Lu P.-L. & Ito E. (2020). A novel, rapid (within hours) culture-free diagnostic method for detecting live Mycobacterium tuberculosis with high sensitivity. EBioMedicine. 60: 103007.
Wu F., Zhang J., Xiao A., Gu X., Lee W. L., Armas F., Kauffman K., Hanage W., Matus M., Ghaeli N., Endo N., Duvallet C., Poyet M., Moniz K., Washburne A. D., Erickson T. B., Chai P. R., Thompson J. & Alm E. J. (2020). SARS-CoV-2 Titers in Wastewater Are Higher than Expected from Clinically Confirmed Cases. mSystems. 5(4).
Yamazaki W., Matsumura Y., Thongchankaew-Seo U., Yamazaki Y. & Nagao M. (2021). Development of a point-of-care test to detect SARS-CoV-2 from saliva which combines a simple RNA extraction method with colorimetric reverse transcription loop-mediated isothermal amplification detection. J Clin Virol. 136: 104760.
Yamazaki Y., Thongchankaew-Seo U. & Yamazaki W. (2022). Very low likelihood that cultivated oysters are a vehicle for SARS-CoV-2: 2021-2022 seasonal survey at supermarkets in Kyoto, Japan. Heliyon. 8(10): e10864.