VI SINH VẬT CHUYỂN HÓA LÂN KHÓ TAN TRONG ĐẤT VÀ TIỀM NĂNG ÁP DỤNG TRONG NÔNG NGHIỆP

Ngày nhận bài: 03-07-2025

Ngày xuất bản: 03-07-2025

Lượt xem

0

Download

0

Chuyên mục:

TÀI NGUYÊN VÀ MÔI TRƯỜNG

Cách trích dẫn:

Miền, P. ., & Thụ, P. (2025). VI SINH VẬT CHUYỂN HÓA LÂN KHÓ TAN TRONG ĐẤT VÀ TIỀM NĂNG ÁP DỤNG TRONG NÔNG NGHIỆP. Tạp Chí Khoa học Nông nghiệp Việt Nam, 19(8). https://doi.org/10.31817/tckhnnvn.2021.19.8.

VI SINH VẬT CHUYỂN HÓA LÂN KHÓ TAN TRONG ĐẤT VÀ TIỀM NĂNG ÁP DỤNG TRONG NÔNG NGHIỆP

Phạm Thị Miền (*) 1 , Phan Minh Thụ 1

  • Tác giả liên hệ: [email protected]
  • 1 Viện Hải dương học, Viện Hàn lâm Khoa học và Công nghệ Việt Nam 01 Cầu Đá, Nha Trang, Khánh Hòa
  • Từ khóa

    Khoáng hóa, hòa tan, phốt pho, vi sinh vật chuyển hóa phốtphát (PSM)

    Tóm tắt


    Vi sinh vật chuyển hóa lân đã được nghiên cứu từ rất lâu để làm phân bón sinh học cho nhiều giống cây trồng cả ở phòng thí nghiệm và ngoài thực tế. Tuy nhiên, vi sinh vật chuyển hóa lân vẫn chưa được thay thế phân bón hóa học sử dụng trong nông nghiệp thương mại. Bài tổng quan này trình bày cơ chế chuyển hóa lân vô cơ và hữu cơ ở vi sinh vật được gọi là các PSM và các yếu tố chính tác động đến quá trình này. Các PSM điển hình như vi khuẩn Azotobacter, Pseudomonas, Bacillus, vi nấm Aspergillus, Penicillium, Trichoderma, xạ khuẩn Actinomyces, Streptomyces và nấm rễ cộng sinh Azospirillum, Rhizobium. Sự chuyển hóa lân chịu sự tác động chính từ sự hoạt động, tương tác của vi sinh vật trong môi trường đất, do đó chịu sự ảnh hưởng bởi chất dinh dưỡng cũng như các đặc tính lý hóa của đất và của từng vùng khí hậu. Đồng thời, một số chủng tiền năng như Azotobacter, Bacillus, Trichoderma đã và đang được áp dụng làm phân bón sinh học cũng được đề cập trong bài báo này, cho thấy việc sử dụng vi sinh vật chuyển hóa phốtphát sẽ thúc đẩy nông nghiệp phát triển bền vững và công nghệ này đã sẵn sàng để khai thác thương mại trên toàn thế giới.

    Tài liệu tham khảo

    Akladious S.A. & Abbas S.M. (2014). Application of Trichoderma harzianum T22 as a Biofertilizer potential in maize growth. Journal of Plant Nutrition. 37(1): 30-49.

    Alori E.T., Glick B.R. & Babalola O.O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology. 8: 971-978.

    Asea P.E.A., Kucey R.M.N. & Stewart J.W.B. (1988). Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biochemistry. 20(4): 459-464.

    Azziz G., Bajsa N., Haghjou T., Taulé C., Valverde Á., Igual J.M. & Arias A. (2012). Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop-pasture rotations in a no-tillage regime in Uruguay. Applied Soil Ecology. 61: 320-326.

    Banik A., Dash G.K., Swain P., Kumar U., Mukhopadhyay S.K. & Dangar T.K. (2019). Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 (MCC 3432) can increase rice yield under green house and field condition. Microbiological Research. 219: 56-65.

    Bashan Y. & de-Bashan L.E. (2010). Chapter Two - How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth-A Critical Assessment. In D.L. Sparks (Ed.). Advances in Agronomy. 108: 77-136.

    Bhattacharyya P.N. & Jha D.K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol.

    (4): 1327-1350.

    Bidondo L.F., Silvani V., Colombo R., Pérgola M., Bompadre J. & Godeas A. (2011). Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biology and Biochemistry. 43(9): 1866-1872.

    Biswas J.K., Banerjee A., Rai M., Naidu R., Biswas B., Vithanage M. & Meers E. (2018). Potential application of selected metal resistant phosphate solubilizing bacteria isolated from the gut of earthworm (Metaphire posthuma) in plant growth promotion. Geoderma. 330: 117-124.

    Bünemann E.K. (2008). Enzyme additions as a tool to assess the potential bioavailability of organically bound nutrients. Soil Biology and Biochemistry. 40(9): 2116-2129.

    Chen Y.P., Rekha P.D., Arun A.B., Shen F.T., Lai W.A. & Young C.C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology. 34(1): 33-41.

    Dastager S.G. & Damare S. (2013). Marine Actinobacteria Showing Phosphate-Solubilizing Efficiency in Chorao Island, Goa, India. Current Microbiology. 66(5): 421-427.

    Ertan Y., Huseyin K., Metin T., Atilla D. & Fahrettin G. (2011). Growth, Nutrient Uptake, and Yield Promotion of Broccoli by Plant Growth Promoting Rhizobacteria with Manure. HortScience horts. 46(6): 932-936.

    Goldstein A.H. (1994). Involvement of The Quinoprotein Glucose Dehydrohenase: In The Solubilization of Exogenous Phosphates by Gram-negative Bacteria (A. Torriani-Gorini, E. Yagiland, & S. Silver Eds.). Washington (DC): ASM Press.

    Gupta R., Bisaria V.S. & Sharma S. (2016). Response of rhizospheric bacterial communities of Cajanus cajan to application of bioinoculants and chemical fertilizers: A comparative study. European Journal of Soil Biology. 75: 107-114.

    Gyaneshwar P., Parekh L.J., Archana G., Poole P.S., Collins M.D., Hutson R.A. & Kumar G.N. (1999). Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiology Letters. 171(2): 223-229.

    Hariprasad P. & Niranjana S.R. (2009). Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant and Soil. 316(1): 13-24.

    Illmer P., Barbato A. & Schinner F. (1995). Solubilization of hardly-soluble AlPO4 with

    P-solubilizing microorganisms. Soil Biology and Biochemistry. 27(3): 265-270.

    Istina I.N., Widiastuti H., Joy B. & Antralina M. (2015). Phosphate-solubilizing Microbe from Saprists Peat Soil and their Potency to Enhance Oil Palm Growth and P Uptake. Procedia Food Science. 3: 426-435.

    Jain R., Saxena J. & Sharma V. (2012). Effect of phosphate-solubilizing fungi Aspergillus awamori S29 on mungbean (Vigna radiata cv. RMG 492) growth. Folia Microbiologica. 57(6): 533-541.

    Jiang C.-y., Sheng X.-f., Qian M. & Wang Q.-y. (2008). Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere. 72(2): 157-164.

    Johri J.K., Surange S. & Nautiyal C.S. (1999). Occurrence of Salt, pH, and Temperature-tolerant, Phosphate-solubilizing Bacteria in Alkaline Soils. Current Microbiology. 39(2): 89-93.

    Khan M.S., Zaidi A., Ahemad M., Oves M. & Wani P.A. (2010). Plant growth promotion by phosphate solubilizing fungi - current perspective. Archives of Agronomy and Soil Science. 56(1): 73-98.

    Khan A.A., Jilani G., Akhtar M.S., Naqvi S.M.S. & Rasheed M. (2009). Phosphorus Solubilizing Bacteria: Occurrence, Mechanisms and their Role in Crop Production. J. Agric. Biol. Sci. 1(1): 48-58.

    Kim K.Y., McDonald G.A. & Jordan D. (1997). Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in

    culture medium. Biology and Fertility of Soils. 24(4): 347-352.

    Khalid A., Arshad M., Shaharoona B., Mahmoud T. (2009). Plant growth promoting rhizobacteria and sustainable agriculture: In Microbial Strategies for Crop Improvement (M.S Khan, A. Zaidi & J. Musarrant Eds.) (Berlin: Springer-Verlag).

    Kumar S., Bauddh K., Barman S.C. & Singh R.P. (2014). Amendments of microbial biofertilizers and organic substances reduces requirement of urea and DAP with enhanced nutrient availability and productivity of wheat (Triticum aestivum L.). Ecological Engineering. 71: 432-437.

    Kumar V., Aggarwal N.K. & Singh B.P. (2000). Performance and persistence of phosphate solubilizing Azotobacter chroococcum in wheat rhizosphere. Folia Microbiologica. 45(4): 343-347.

    Kumar V., Kumar Behl R. & Narula N. (2001). Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere

    and their effect on wheat cultivars under green house conditions. Microbiological Research. 156(1): 87-93.

    Li Z. & Zhang H. (2001). Application of Microbial Fertilizers in Sustainable Agriculture. Journal of Crop Production. 3(1): 337-347.

    Mobley D.M., Chengappa M.M., Kadel W.L. & Stuart J.G. (1984). Effect of pH, temperature and media on acid and alkaline phosphatase activity in “clinical” and “nonclinical” isolates of Bordetella bronchiseptica. Can J Comp Med. 48(2): 175-178.

    Molla A.H., Manjurul Haque M., Amdadul Haque M. & Ilias G.N.M. (2012). Trichoderma-Enriched Biofertilizer Enhances Production and Nutritional Quality of Tomato (Lycopersicon esculentum Mill.) and Minimizes NPK Fertilizer Use. Agricultural Research. 1(3): 265-272.

    Morales A., Alvear M., Valenzuela E., Rubio R. & Borie F. (2007). Effect of inoculation with Penicillium albidum, a phosphate-solubilizing fungus, on the growth of Trifolium pratense cropped in a volcanic soil. Journal of Basic Microbiology. 47 (3): 275-280.

    Mudryk Z.J. (2004). Decomposition of organic and solubilisation of inorganic phosphorus compounds by bacteria isolated from a marine sandy beach. Marine Biology. 145(6): 1227-1234.

    Mullaney E.J., Daly C.B. & Ullah A.H.J. (2000). Advances in phytase research. In Advances in Applied Microbiology. 47: 157-199.

    Mullaney E.J. & Ullah A.H.J. (2003). The term phytase comprises several different classes of enzymes. Biochemical and Biophysical Research Communications. 312(1): 179-184.

    Mundra S., Arora R. & Stobdan T. (2011). Solubilization of insoluble inorganic phosphates by a novel temperature-, pH-, and salt-tolerant yeast, Rhodotorula sp. PS4, isolated from seabuckthorn rhizosphere, growing in cold desert of Ladakh, India. World Journal of Microbiology and Biotechnology. 27(10): 2387-2396.

    Nannipieri P., Giagnoni L., Landi L. & Renella G. (2011). Role of Phosphatase Enzymes in Soil. In E. Bünemann, A. Oberson, & E. Frossard (Eds.): Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling, in Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 215-243.

    Narsian V. & Patel H.H. (2000). Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology and Biochemistry. 32(4): 559-565.

    Nautiyal C.S., Bhadauria S., Kumar P., Lal H., Mondal R. & Verma D. (2000). Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiology Letters. 182(2): 291-296.

    Neal A.L., Blackwell M., Akkari E., Guyomar C., Clark I. & Hirsch P.R. (2018). Phylogenetic distribution, biogeography and the effects of land management upon bacterial non-specific Acid phosphatase Gene diversity and abundance. Plant and Soil. 427(1): 175-189.

    Omar S.A. (1997). The role of rock-phosphate-solubilizing fungi and vesicular–arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World Journal of Microbiology and Biotechnology. 14(2): 211-218.

    Park K.H., Lee C.Y. & Son H.J. (2009). Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Letters in Applied Microbiology. 49(2): 222-228.

    Peix A., Mateos P.F., Rodriguez-Barrueco C., Martinez-Molina E. & Velazquez E. (2001). Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biology and Biochemistry. 33(14): 1927-1935.

    Reyes I., Bernier L., Simard R.R. & Antoun H. (1999). Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiology Ecology.

    (3): 281-290.

    Richardson A.E. & Simpson R.J. (2011). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 156(3): 989-996.

    Rodrý́guez H. & Fraga R. (1999). Phosphate solubilizing bacteria and their role in plant

    growth promotion. Biotechnology Advances. 17(4): 319-339.

    Rodríguez H., Fraga R., Gonzalez T. & Bashan Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil.

    (1): 15-21.

    Rodrý́guez H. & Fraga R. (1999). Phosphate solubilizing bacteria and their role in plant

    growth promotion. Biotechnology Advances.

    (4): 319-339.

    Rosado Azevedo D., Cruz D., Elsas V. & Seldin (1998). Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane or rhizosphere soil of different grasses. Journal of Applied Microbiology. 84(2): 216-226.

    Seshachala U. & Tallapragada P. (2012). Phosphate Solubilizers from the Rhizosphere of Piper nigrum L. in Karnataka, India. Chilean journal of Agricultural Research. 72: 397-403.

    Shakeri E., Modarres-Sanavy S.A.M., Amini Dehaghi M., Tabatabaei S.A. & Moradi-Ghahderijani M. (2016). Improvement of yield, yield components and oil quality in sesame (Sesamum indicum L.) by N-fixing bacteria fertilizers and urea. Archives of Agronomy and Soil Science. 62(4): 547-560.

    Sharma S.B., Sayyed R.Z., Trivedi M.H. & Gobi T A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus.

    : 587-601.

    Srinivasan R., Prabhu G., Prasad M., Mishra M., Chaudhary M. & Srivastava R. (2020). Chapter 32 - Penicillium. In N. Amaresan, M. Senthil Kumar, K. Annapurna, K. Kumar, & A. Sankaranarayanan (Eds.): Beneficial Microbes in Agro-Ecology: Academic Press. pp. 651-667.

    Štajner D., Kevrešan S., Gašić O., Mimica-Dukić N. & Zongli H. (1997). Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet. Biologia Plantarum. 39 (3): 441-445.

    Tarafdar J.C., Yadav R.S. & Meena S.C. (2001). Comparative efficiency of acid phosphatase originated from plant and fungal sources. Journal of Plant Nutrition and Soil Science. 164(3): 279-282.

    Teymouri M., Akhtari J., Karkhane M. & Marzban A. (2016). Assessment of phosphate solubilization activity of Rhizobacteria in mangrove forest. Biocatalysis and Agricultural Biotechnology.

    : 168-172.

    Vassilev N., Medina A., Azcon R. & Vassileva M. (2006). Microbial solubilization of rock phosphate on media containing agro-industrial wastes and effect of the resulting products on plant growth and P uptake. Plant and Soil. 28(1): 77-84.

    Wang H.-y., Liu S., Zhai L.-m., Zhang J.-z., Ren T.-z., Fan B.-q. & Liu H.-b. (2015). Preparation and utilization of phosphate biofertilizers using agricultural waste. Journal of Integrative Agriculture. 14(1): 158-167.

    White C., Sayer J.A. & Gadd G.M. (1997). Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiology Reviews.

    : 503-516.

    Zeng Q., Wu X. & Wen X. (2016). Effects of Soluble Phosphate on Phosphate-Solubilizing Characteristics and Expression of gcd Gene in Pseudomonas frederiksbergensis JW-SD2. Current Microbiology. 72(2): 198-206.

    Zhang L., Ding X., Chen S., He X., Zhang F. & Feng G. (2014). Reducing carbon: phosphorus ratio can enhance microbial phytin mineralization and lessen competition with maize for phosphorus. Journal of Plant Interaction. 9(1): 850-856.

    Zhao K., Penttinen P., Zhang X., Ao X., Liu M., Yu X. & Chen Q. (2014). Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research. 169(1): 76-82.

    Zhu F., Qu L., Hong X. & Sun X. (2011). Isolation and Characterization of a Phosphate-Solubilizing Halophilic Bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China. Evid Based Complement Alternat Med.

    pp. 32-38.