ISOLATION AND CHARACTERIZATION OF THE PHYTASE GENE PROMOTER FROM Bacillus licheniformis DSM13

Ngày nhận bài: 20-09-2017

Ngày duyệt đăng: 25-03-2017

Ngày xuất bản: 06-08-2025

Lượt xem

0

Download

0

Chuyên mục:

KỸ THUẬT VÀ CÔNG NGHỆ

Cách trích dẫn:

Trung, N., Trung, N., Thuan, N., Trung, T., Trung, N., Thuy, T., & Anh, N. (2025). ISOLATION AND CHARACTERIZATION OF THE PHYTASE GENE PROMOTER FROM Bacillus licheniformis DSM13. Tạp Chí Khoa học Nông nghiệp Việt Nam, 15(3), 298–305. https://doi.org/10.31817/tckhnnvn.2017.15.3.

ISOLATION AND CHARACTERIZATION OF THE PHYTASE GENE PROMOTER FROM Bacillus licheniformis DSM13

Nguyen Thanh Trung (*) 1, 2, 3, 4 , Nguyen Minh Trung 1, 2, 3, 4 , Nguyen Huy Thuan 1, 2, 3, 4 , Trinh Thanh Trung 1, 2, 3, 4 , Nguyen Quoc Trung 1, 2, 3, 4 , Trinh Thi Thu Thuy 1, 2, 3, 4 , Nguyen Hoang Anh 1, 2, 3, 4

  • Tác giả liên hệ: [email protected]
  • 1 Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang
  • 2 Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi
  • 3 Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi
  • 4 Faculty of Food Science and Technology, Vietnam National University of Agriculture, Hanoi
  • Từ khóa

    Bacillus licheniformis, gene expression, phosphate starvation, phytate, phytase

    Tóm tắt


    Phytases are a group of enzymes that hydrolyze phytate to release inorganic phosphate and myo-inositol phosphate intermediates. The phytase encoding gene (phyL) of Bacillus licheniformis DSM13 is strongly induced during phosphate starvation conditions. In this study, we analyzed the activity of the phytase promoter by constructing a recombinant strain containing a plasmid bearing the phyL promoter fragment and the reporter gene xynA (encoding the xylanase) fusion. The recombinant strain was grown in conditions without and with the addition of different concentrations of sodium phytate. The results showed that the phytase promoter was strongly induced when less than 5 mM of phytate was added to the growth medium. Furthermore, growth analysis experiments revealed that phytate was an important alternative phosphate source for B. licheniformis cells to overcome phosphate starvation conditions.

    Tài liệu tham khảo

    Antelmann H., Töwe S., Albrecht D. and Hecker M. (2007). The phosphorus source phytate changes the composition of the cell wall proteome in Bacillus subtilis. J. Proteome. Res., 6:897 - 903.

    Bailey J.M., Biely P. and Poutanen K. (1992). Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol., 23: 257 - 270.

    Bohn L., Meyer A.S. and Rasmussen S.K. (2008). Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J. Zhejiang Univ. Sci. B., 9:165 - 191.

    Choi Y.M., Suh H.J. and Kim J.M. (2001). Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J. Prot. Chem., 20:287 - 292.

    Greiner R., Konietzny U. and Jany K.D. (1993). Purification and characterization of two phytases from Escherichia coli. Arch. Biochem. Biophys., 303: 107 - 113.

    Greiner R., Haller E., Konietzny U. and Jany K.D. (1997). Purification and characterization of a phytase from Klebsiella terrigena. Arch. Biochem. Biophys., 341: 201 - 206.

    Harland B.F. and Oberleas D. (1999). Phytic acid complex in feed ingredients. In: Coelho MB, Kornegay ET (eds) Phytase in animal nutrition and waste management. BASF Corp, Mount Olive,

    pp. 69 - 76.

    Hoi L.T. (2006). Genome-wide analysis of nutrient starvation responses of Bacillus licheniformis. Dissertation, University of Greifswald.

    Hoi L.T., Voigt B., Jurgen B., Ehrenreich A., Gottschalk G., Evers S., Feesche J., Maurer K.H., Hecker M. and Schweder T. (2006). The phosphate-starvation response of Bacillus licheniformis. Proteomics, 6: 3582 - 3601.

    Ibrahim D., Zhu H.L., Yusof N., Isnaeni and Hong L.S. (2013). Bacillus licheniformis BT5.9 isolated from Changar hot spring, Malang, Indonesia, as a potential producer of thermostable -amylase. Trop. Life. Sci. Res., 24: 71 - 84.

    Jorquera M.A., Saavedra N., Maruyama F., Richardson A.E., Crowley D.E., del C Catrilaf R., Henriquez E.J. and de la Luz Mora M. (2013). Phytate addition to soil induces changes in the abundance and expression of Bacillus ß-propeller phytase genes in the rhizosphere. FEMS. Microbiol. Eco., 83: 352 - 360.

    Kerovuo J., Lauraeus M., Nurminen P., Kalkinnen N. and Apajalahti J. (1998). Isolation, characterization, molecular gene cloning and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol., 64: 2079 - 2085.

    Konietzny U. and Greiner R. (2002). Molecular and catalytic properties of phytate-degrading enzymes (phytases). Inter. J. Food Sci. Technol.,

    : 791 - 812.

    Moling S.D., Douglas M.W., Hohnson M.L., Wang X., Parsons C.M., Koelkebeck K.W. and Zimmerman R.A. (2000). The effects of dietary available phosphorus levels and phytase on performance

    of young and older laying hens. Poult. Sci.,

    : 224 - 230.

    Mullaney E.J. and Ullah A.H.J. (2007). Phytase: attributes, catalytic mechanisms and applications. Inositol phosphates: linking agriculture and the environment (Turner BL, Richardson AE and Mullaney EJ, eds), CABI Publishing, Oxfordshire, UK, pp. 97 - 110.

    Lan G.Q., Abdullah N., Jalaludin S. and Ho Y.W. (2002). Culture conditions influencing phytase production of Mitsuokella jalaludinii, a new bacterial species from the rumen of cattle. J. Appl. Microbiol., 93: 668 - 674.

    Rao D.E., Rao K.V., Reddy T.P. and Reddy V.D. (2009). Molecular characterization, physicochemical properties, known and potential applications of phytases: An overview. Crit. Rev. Biotechnol., 29: 182- 198.

    Reddy N.R., Sathe S.K. and Salunkhe D.K. (1982). Phytates in legumes and cereals. Adv. Food. Res., 28: 1- 92.

    Richardson A.E. and Hadobas P.A. (1997). Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can. J. Microbiol., 43: 509 - 516.

    Roy T., Mondal S. and Ray A.M. (2009). Phytase-producing bacteria in the digestive tracts of some freshwater fish. Aquac. Res., 40: 344 - 353.

    Sajidan A., Farouk A., Greiner R., Jungblut P., Müller E.C. and Borriss R. (2004). Molecular and physiological characterization of a 3-Phytase from the rhizobacterium Klebsiella pneumoniae ASR1. Appl. Microbiol. Biotechnol., 65: 110 - 118.

    Singh B., Kunze G. and Satyanarayana T. (2011). Developments in biochemical aspects and biotechnological applications of microbial phytase. Biotechnol. Mol. Biol. Rev., 6:69 - 87.

    Stülke J. and Hillen W. (2000). Regulation of carbon catabolism in Bacillus species. Annu. Rev. Microbiol., 54: 849 - 880.

    Truong L.V. (2006). Characterization of the pectinolytic enzymes of the marine psychrophilic bacterium Pseudoalteromonas haloplanktis strain ANT/505. Dissertation, University of Greifswald.

    Yoon S.J., Choi Y.J., Min H.K., Cho K.K., Kim J.W., Lee S.C. and Jung Y.H. (1996). Isolation and identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzyme Microbial. Technol., 18: 449 - 454.

    Yon J. and Fried M. (1989). Precise gene fusion by PCR. Nucleic Acids Res., 17: 4895.