Phân tích thông tin di truyền liên quan đến hiệu suất sử dụng đạm ở lúa

Ngày nhận bài: 06-06-2025

Ngày xuất bản: 13-06-2025

Lượt xem

0

Download

0

Chuyên mục:

NÔNG HỌC

Cách trích dẫn:

Hạnh, N., Cường, P., & Pierre, B. . (2025). Phân tích thông tin di truyền liên quan đến hiệu suất sử dụng đạm ở lúa. Tạp Chí Khoa học Nông nghiệp Việt Nam, 11(6). https://doi.org/10.31817/tckhnnvn.2013.11.6.

Phân tích thông tin di truyền liên quan đến hiệu suất sử dụng đạm ở lúa

Nguyễn Thị Thúy Hạnh (*) 1, 2, 3 , Phạm Văn Cường , Bertin Pierre 1, 2, 3

  • Tác giả liên hệ: [email protected]
  • 1 Department of Biology, Faculty of Biotechnology, Hanoi University of Agriculture, Vietnam
  • 2 Department of food crop science, Faculty of Agronomy, Hanoi University of Agriculture, Vietnam
  • 3 Earth and Life Institute, Faculty of Biological Engineering, Agriculture and Environment, Université catholique de Louvain, Belgium
  • Từ khóa

    Dòng thuần tái tổ hợp (RILs), hiệu suất sử dụng đạm (NUE), QTL

    Tóm tắt


    A better understanding of genomic region might provide a genetic basic for the improvement of nitrogen use efficiency (NUE). The objective of this study was to identify the genetic regions affecting NUE in rice through the study of contrast cultivars and recombinant inbred lines (RILs) for QTLs analysis. A total of 169 RILs and their parents IR64 and Azucena were cultivated in the same conditions under different nitrogen conditions in two separated experiments. The WinQTL Cartographer version 2.5 was used to analyze joint QTL for multiple traits of each experiment. The first mapping experiment showed a total of 44 QTLs for all 15 observed parameters including number  of  leaves (NL), number  of  tillers (NT), plant  height (PH), total fresh matter (FM), dry weight of roots (DWR), dry weight of leaf sheaths plus stems (DWS), dry weight of leaf blades (DWL), total dry matter (DM), chlorophyll content index (CCI), N concentration in roots (%NR), N concentration in leaf sheaths plus stems (%NS), N concentration in leaf blades (%NL), absorption NUE (aNUE), physiological NUE (pNUE) and agronomical NUE (agNUE) on chromosome 1, 2, 3, 4, 5, 6, 7, 8, 10 and 12. The second experiment detected 44 QTLs for NL, NT, PH, FM, DWR, DWS, DWL, DM, CCI, %NR, %NL, aNUE and agNUE on chromosome 1, 2, 3, 5, 6, 7, 8 and 12.

    Tài liệu tham khảo

    Ahmadi N., Dubreuil-Tranchant C., Courtois B., Foncéka D., This D., Mc Couch S.R., Lorieux M., Glaszmann J.C. and Ghesquière A. (2005). New resources and integrated maps for IR64 x Azucena, a reference population in rice. In: IRRI 5th International Rice Genetics Symposium and 3rd International Rice Functional Genomics Symposium, Manila, Philip, 19823 November 2005. sl:sn, 1p. International Rice Genetics Symposium. 5, 2005811819/2005811823, Manille, Philippines.

    Dufey, I., Hakizimana, P., Drayer, X., Lutts, S. and Bertin, P. (2009). QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica 167:143-160. DOI 10.1007/s10681-008-9870-7

    Fang P. and Wu P. (2001). QTL × N-level interaction for plant height in rice (Oryza Sativa L.). Plant and Soil 236: 237-242.

    Feng Y., Cao L.Y., Wu W.M., Shen X.H., Zhan X.D., Zhai R.R., Wang R.C., Chen D.B. and Cheng S. H. (2010). Mapping QTLs for nitroge n- deficiency tolerance at seedling stage in rice (Oryza sativa L.). Plant Breed 129:652- 656

    Giles, J. 2005. Nitrogen study fertilizes fears of pollution. Nature 433:791.

    Glass A.D.M., (2003). Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Critical Reviews in Plant Sciences 22: 453-470.

    Good A.G., Shrawat A.K. and Muench D.G. ( 2004). Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science 9: 597-605.

    Guo L.B., Zhu L.H., Xu Y.B., Zeng D.L., Wu P. and Qian Q. (2004). QTL analysis of seed dormancy in rice (Oryza sativa L.). Euphytica 140:155-162.

    Hamaoka N., Uchida Y., Tomita M., Kumagai E., Araki T. and Ueno O. (2013). Genetic Variations in Dry Matter Production, Nitrogen Uptake, and Nitrogen Use Efficiency in the AA Genome Oryza Species Grown under Different Nitrogen Conditions. Plant Prod. Sci. 16(2): 107-116.

    Hashimoto M., Herai Y., Nagaoka T. and Kouno K. (2007). Nitrate leaching in granitic regosol as affected by N uptake and transpiration by corn. Soil Sci. Plant Nutr. 53:300-309.

    Hirel B., Bertin P., Quillere I., Bourdoncle W., Attagnant C., Dellay C., Gouy A., Cadiou S., Retailliau C. and Falque M.(2001). Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125: 1258-1270

    Kant S., Bi Y.M. and Rothstein S.J. (2011). Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of Experimental Botany. 62 (4): 1499-1509

    Lander E.S. and Botstein D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genet. 121: 185-199.

    Lian X., Xing Y., Yan H., Xu C., Li X., Zhang Q. (2005). QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet 112:85– 96

    Liang Y., Gao Z., Shen X., Zhan Xi., Zhang Y., Wu W., Cao L. and Cheng S. (2011). Mapping and Comparative Analysis of QTL for Rice Plant Height Based on Different Sample Sizes within a Single Line in a RIL Population. Rice Science, 18(4): 265-272

    Misselbrook T.H., van der Weerden T.J., Pain B.F., Jarvis S.C., Chambers B.J., Smith K.A., Philips V.R. and Demmers T.G.M. (2000). Ammonia emission factors for UK agriculture. Atmospheric Environment 34: 871-880.

    Mosier A., Syers J.K. and Freney J.R. (2004). Agriculture and the nitrogen cycle. Assessing the impacts of fertilizer use on food production and the environment. SCOPE 65. Washington, DC: Island Press.

    Namai S., Toriyama K. and Fukuta Y. (2009). Genetic variation in dry matter production and physiological nitrogen use efficiency in rice (Oryza sativa L.) varieties. Breeding Science 59: 269-276.

    Raun W.R., Johnson G.V. (1999). Improving nitrogen use efficiency for cereal production. Agronomy Journal 91: 357-363.

    Samborski S., Kozak M. and Azevedo R.A. (2008). Does nitrogen uptake affect nitrogen uptake efficiency, or vice versa? Acta Physiologiae Plantarum. 30:419-420.

    Senthilvel S., Vinod K.K., Malarvizhi P. and Maheswaran M. (2008). QTL and QTL × Environment Effects on Agronomic and Nitrogen Acquisition Traits in Rice. Journal of Integrative Plant Biology.50(9):1108-1117

    Shan Y.H., Wang Y.L., Pan X.B. (2005). Mapping of QTLs for nitrogen use efficiency and related traits in rice ( Oryza sativa L). Acta Agron Sin. 4(10):721-727.

    Wei D., Cui K.H., Pan J.F., Ye G.Y., Xiang J., Nie L.X., Huang J.L. (2011). Genetic dissection of grain nitrogen use efficiency and grain yield and their relationship in rice. Field Crops Res. 124: 340-346.

    Wei D., Cui K., Pan J., Wang Q., Wang K., Zhang X., Xiang J., Nie L. and Huang J. (2012b). Identification of quantitative trait loci for grain yield and its components in response to low nitrogen application in rice. AJCS. 6(6): 986-994. ISSN: 1835-2707.

    Wei D., Cui K., Ye G., Pan J., Xiang J., Huang J. and Nie L. (2012a). QTL mapping for nitrogen-use efficiency and nitrogen-deficiency tolerance traits in rice. Plant Soil, 359: 281-295.

    Wu P., Hu B., Liao C.Y., Zhu J.M., Wu Y.R., Senadhira D. and Paterson A.H. (1998). Characterization of tissue tolerance to iron by molecular markers in different lines of rice. Plant Soil 203: 217-226.

    Wuebbles D.J. (2009). Nitrous oxide: no laughing matter. Science. 326: 56-57.

    Yoshida S., Forno D.A., Cock J.H. and Gomez K.A. (1976). Laboratory manual for physiological studied of rice. 3rd edn. Int Rice Res Inst, Manila.

    Zhang X.Q., Zhang G.P., Guo L.B., Wang H.Z., Zeng D.L., Dong G.J., Qian Q. and Xue D.W. (2011). Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Euphytica 180:173-179.