Date Received: 04-04-2024
Date Accepted: 17-04-2025
Date Published: 28-03-2025
##submissions.doi##: https://doi.org/10.1234/v9wgff55
Views
Downloads
How to Cite:
Dynamic Analysis of Inorganic Fertilizer Particles using Centrifugal Rotating Disc
Keywords
dynamics, Centrifugal rotating disc, inorganicl fertilizer particle
Abstract
Precision agriculture requires accurate fertilizer application in terms of quantity, location, and timing to enhance cultivation efficiency, conserve resources, and reduce environmental impact. This study develops a theoretical model to simulate the trajectory of fertilizer granules after leaving the spinning disc. The dynamics and numerical
Runge-Kutta methods are applied to analyze the effects of air drag coefficient, granule size, and density on travel distance. The results show an inverse relationship between the air drag coefficient and travel distance. As the air drag coefficient increases from 0.4 to 0.6, the travel distance decreases from 17.79m to 15.59m. Conversely, granule diameter and density exhibit a direct proportionality with landing position. When the diameter increases from 2mm to 4mm, the travel distance rises from 13.98m to 20.79m. Similarly, when the density increases from 1,200 kg/m³ to 1,800 kg/m³, the travel distance extends from 15.59m to 19.64m. This study confirms that designing an optimal fertilizer spreading system requires considering the interaction between the physical and mechanical properties of the granules to maximize distribution efficiency in the field
References
Abbou-ou-cherif E.-M., Piron E., Chateauneuf A., Miclet D., Lenain R. & Koko J. (2017). On-the-field simulation of fertilizer spreading: Part 1 - Modeling. Computers and Electronics in Agriculture. 142: 235-247.
Abbou-Ou-Cherif E-M., Piron E., Chateauneuf A., Miclet D. & Villette S. (2019). On-the-Field Simulation of Fertilizer Spreading: Part 3 - Control of Disk Inclination for Uniform Application on Undulating Fields. Computers and Electronics in Agriculture. 158: 150-158.
Aphale A., Bolander N., Park J., Shaw L., Svec J. & Wassgren C. (2003). Granular Fertiliser Particle Dynamics on and off a Spinner Spreader. Biosystems Engineering. 85(3): 319-329.
Cool S.R., Pieters J.G., Van Acker J., Van Den Bulcke J., Mertens K.C., Nuyttens D.R.E., Van De Gucht T.C. & Vangeyte J. (2016). Determining the Effect of Wind on the Ballistic Flight of Fertiliser Particles. Biosystems Engineering. 151: 425-34.
Cool Simon R., Jan G. Pieters, Dejan Seatovic, Koen C. Mertens, David Nuyttens, Tim C. Van De Gucht & Jürgen Vangeyte (2017). Development of a Stereovision-Based Technique to Measure the Spread Patterns of Granular Fertilizer Spreaders. Sensors. 17(6): 1396.
Ding Shangpeng, Lu Bai, Yuxiang Yao, Bin Yue, Zuoli Fu, Zhiqi Zheng & Yuxiang Huang (2018). Discrete Element Modelling (DEM) of Fertilizer Dual-Banding with Adjustable Rates. Computers and Electronics in Agriculture. 152: 32-39.
Dintwa Edward, Paul Van Liedekerke, Robert Olieslagers, Engelbert Tijskens & Herman Ramon (2004). Model for Simulation of Particle Flow on a Centrifugal Fertiliser Spreader. Biosystems Engineering. 87(4): 407-15.
Dormand J.R. & Prince P.J. (1980). A Family of Embedded Runge-Kutta Formulae. Journal of Computational and Applied Mathematics. 6(1): 19-26.
Grift T.E., Walker J.T. & Hofstee J.W. (1997). Aerodynamic Properties of Individual Fertilizer Particles. Transactions of the Asae. 40(1): 13-20.
Le Tien-Thinh, Denis Miclet, Philippe Heritier, Emmanuel Piron, Alaa Chateauneuf & Michel Berducat (2018). Morphology Characterization of Irregular Particles Using Image Analysis. Application to Solid Inorganic Fertilizers. Computers and Electronics in Agriculture. 147: 46-57.
Mando M. & Rosendahl L. (2010). On the Motion of Non-Spherical Particles at High Reynolds Number. Powder Technology. 202(1-3): 1-13.
Nguyễn Chung Thông, Lê Minh Lư, Nguyễn Xuân Thiết & Nguyễn Thị Hạnh Nguyên (2021). Xây dựng mô hình dao động thẳng đứng của liên hợp máy gieo kết hợp với bón phân cho đậu tương. Tạp chí Khoa học Nông nghiệp Việt Nam. 19(5): 652-661.
Nguyễn Hoa Toàn (2019). Phân bón hoá học. Nhà xuất bản Khoa học và Kỹ thuật.
Nieuwenhuizen A.T., Hofstee J.W., Lokhorst C. & Muller J.. (2003). Evaluation of Fertiliser Spreading Strategies. Precision Agriculture. pp. 439-44.
Olieslagers R., Ramon H. &De Baerdemaeker J. (1996). Calculation of Fertilizer Distribution Patterns from a Spinning Disc Spreader by Means of a Simulation Model. Journal of Agricultural Engineering Research. 63(2): 137-52.
Park Alex G., Andrew J. McDonald, Mina Devkota & Adam S. Davis (2018). Increasing Yield Stability and Input Efficiencies with Cost-Effective Mechanization in Nepal. Field Crops Research. 228: 93-101.
Przywara Artur, Francesco Santoro, Artur Kraszkiewicz, Anna Pecyna & Simone Pascuzzi (2020). Experimental Study of Disc Fertilizer Spreader Performance. Agriculture. 10(10): 467.
Shampine Lawrence F. & Mark W. Reichelt (1997). The MATLAB ODE Suite. SIAM Journal on Scientific Computing. 18(1): 1-22.
Stewart W.M., Dibb D.W., Johnston A.E. & Smyth T.J. (2005). The Contribution of Commercial Fertilizer Nutrients to Food Production. Agronomy Journal. 97(1): 1-6.
Stojadinović Saša, Radoje Pantović & Miodrag Žikić (2011). Prediction of Flyrock Trajectories for Forensic Applications Using Ballistic Flight Equations. International Journal of Rock Mechanics and Mining Sciences. 48(7): 1086-94.
The MathWorks Inc (2018). MATLAB 2018. Natick, Massachusetts: The MathWorks Inc.
Tran-Cong S., Gay M. & Michaelides E.E. (2004). Drag Coefficients of Irregularly Shaped Particles. Powder Technology. 139(1): 21-32.
Van Liedekerke P., Tijskens E., Dintwa E., Anthonis J. & Ramon H. (2006). A Discrete Element Model for Simulation of a Spinning Disc Fertilizer Spreader I. Single Particle Simulations. Powder Technology. 170(2): 71-85.
Villette S., Cointault F., Piron E. & Chopinet B. (2005). Centrifugal Spreading: An Analytical Model for the Motion of Fertiliser Particles on a Spinning Disc. Biosystems Engineering. 92(2): 157-64.
Villette S., Piron E., Martin R., Miclet D., Boilletot M. & Gee C. (2010). Measurement of an Equivalent Friction Coefficient to Characterise the Behaviour of Fertilisers in the Context of Centrifugal Spreading. Precision Agriculture. 11(6): 664-83.
Villette S., Piron E., Miclet D., Martin R., Jones G., Paoli J.N. & Gee C. (2012). How Mass Flow and Rotational Speed Affect Fertiliser Centrifugal Spreading: Potential Interpretation in Terms of the Amount of Fertiliser per Vane. Biosystems Engineering. 111(1): 133-38.
Xian Yong, Le-liang Ren, Ya-jie Xu, Shao-peng Li, Wei Wu & Da-qiao Zhang (2023). Impact Point Prediction Guidance of Ballistic Missile in High Maneuver Penetration Condition. Defence Technology. 26: 213-30.
Xie Ya-chen, Shao-bo Qi, Jia-qi Bai, Meng-lu Li & Guang-yan Huang (2024). Ballistic Performance of Flexible Structures Composed of UHMWPE Fibers and Airbag: Effects of the Stacking Order. International Journal of Impact Engineering. 191: 105008.
Yinyan Shi, Chen Man, Wang Xiaochan, Morice Oluoch Odhiambo & Ding Weimin (2018). Numerical Simulation of Spreading Performance and Distribution Pattern of Centrifugal Variable-Rate Fertilizer Applicator Based on DEM Software. Computers and Electronics in Agriculture. 144: 249-59.
Zhang Qinghui, Jianguo Li, Tengfei Ren, Bohan Ma & Tao Suo (2023). Ballistic Response and Failure Mechanisms of Gradient Structured Mg Alloy. Journal of Materials Research and Technology. 26: 5236-51.
Zinkevièienë Raimonda, Eglë Jotautienë, Antanas Juostas, Antonio Comparetti & Edvardas Vaiciukevièius (2021). Simulation of Granular Organic Fertilizer Application by Centrifugal Spreader. Agronomy. 11(2): 247.