Evaluation of the Toxicity of Extract From Gnetum montanum on the Striped Catfish (Pangasianodon hypophthalmus) Fingerlings

Date Received: 07-11-2024

Date Accepted: 27-06-2025

Date Published: 27-06-2025

Views

2

Downloads

3

Section:

CHĂN NUÔI – THÚ Y – THỦY SẢN

How to Cite:

Mai, N., & Hang, N. (2025). Evaluation of the Toxicity of Extract From Gnetum montanum on the Striped Catfish (Pangasianodon hypophthalmus) Fingerlings. Vietnam Journal of Agricultural Sciences, 23(6), 762–770. https://doi.org/10.31817/tckhnnvn.2025.23.6.06

Evaluation of the Toxicity of Extract From Gnetum montanum on the Striped Catfish (Pangasianodon hypophthalmus) Fingerlings

Nguyễn Thị Mai (*) , Nguyen Thu Hang 1

  • Tác giả liên hệ: [email protected]
  • 1 Bộ môn Dược lý, Đại học Dược Hà Nội
  • Keywords

    Toxicity, striped catfish, lethal dose 50%, lethal concentration 50%, Gnetum montanum

    Abstract


    Medicinal plants are increasingly being researched and widely utilized in aquaculture; however, certain herbs also possess inherent toxicity. The current study assessed the toxicity of extracts from Gnetum montanum and determined the concentration or dose causing 50% mortality (LC50/LD50) in striped catfish through immersion and oral administration. Striped catfish fingerlings (~10 g) were exposed to water containing various extract concentrations (800; 1,000; 1,200; 1,400, and 1,600 mg/l), while the oral gavage method involved doses of 350, 450, 550, 650, and 750 mg/kg fish. Mortality rates were observed at 24, 48, 72, and 96 hours. The results showed that Gam extract was toxic to striped catfish fingerlings. The LC50 after 24, 48, and 72/96h were 1,114.81; 1,100.56; and 1,046.62 mg/l, respectively; the LD50 was 562.83 mg/kg fish after 48h and 518.23 mg/kg fish after 72/96h. Safe concentrations were below 111.48, 110.06, and 104.66 mg/l after 24, 48, and 72/96h, respectively; safe doses were below 56.28 mg/kg fish after 48h and 51.82 mg/kg fish after 72/96h. Fish exhibiting signs of toxicity showed pronounced alterations in the morphology and coloration of internal organs such as the gallbladder, liver, spleen, kidney, and heart. Observed changes included congestion, discoloration, and deformation, indicating significant physiological impacts of the toxic compounds on internal organ function.

    References

    Anywar G., Kakudidi E., Byamukama R., Mukonzo J., Schubert A., Oryem-Origa H. & Jassoy C. (2021). A Review of the Toxycity and Phytochemistry of Medicinal Plant Species Used by Herbalists in Treating People Living With HIV/AIDS in Uganda. Frontiers in Pharmacology. 12: 1-10. doi:10.3389/fphar.2021.615147.

    Badguzar V.S., Satkar S.G., Kumar R. & A.A. (2024). Comprehensive review of prebiotics and probiotics in aquaculture: Mechanisms and applications. International Journal of Veterinary Sciences and Animal Husbandry. 9(1S): 777-780. doi: 10.22271/veterinary.2024.v9.i1sk.1157.

    Dadras F., Velisek J. & Zuskova E. (2023). An update about beneficial effects of medicinal plants in aquaculture: A review. Veterinarni Medicina. 68(12): 449-463. doi:10.17221/96/2023-VETMED.

    EL Moussaoui A., Bourhia M., Jawhari F.Z., Mechchate H., Slighoua M., Bari A., Ullah R., Mahmood H.M., Ali S.S., Ibenmoussa S., Bousta D. & Bari A. (2020). Phytochemical identification, acute, and sub-acute oral toxycity studies of the foliar extract of Withania frutescens. Molecules. 25(19): 1-10. doi:10.3390/molecules25194528.

    Finney D.J. (1971). Probit Analysis. Cambridge University Press. doi:10.1002/jps.2600600940.

    Jayasinghe C.D. & Jayawardena U.A. (2019). Toxycity assessment of herbal medicine using zebrafish embryos: A systematic review. Evidence-Based Complementary and Alternative Medicine. doi:10.1155/2019/7272808.

    Mai N.T., Tung M. Van, Quan D.H., Huong V.T.T. & Hang N.T. (2023). Impacts of dietary supplementation of peptidoglycan extracted from Lactobacillus sp. on the growth performance and resistance to Streptococcus agalactiae of Nile tilapia. Vietnam Journal of Agricultural Sciences. 6(2): 1787-1796. doi:10.31817/vjas.2023.6.2.04.

    Mandefro B., Fereja W. M., Fremichael D., Mereta S. T. & Ambelu A. (2024). Analysis of Achyranthes aspera leaf extract and acute toxycity study on fingerlings of Nile tilapia, Oreochromis niloticus. Biochemistry and Biophysics Reports. 37: 101624. DoI:10.1016/j.bbrep.2023.101624.

    Mavraganis T., Constantina C., Kolygas M., Vidalis K. & Nathanailides C. (2020). Environmental issues of aquaculture development. Egyptian Journal of Aquatic Biology and Fisheries. 24(2): 441-450. doi:10.21608/EJABF.2020.85857.

    Nguyễn Ngọc Thuần, Trần Thị Phương Nhung, Nguyễn Ngọc Tuấn, Nguyễn Thị Ngần, Đào Thị Huệ, Võ Dương Mỹ Duyên, Bùi Thanh Hoà, Trần Thành Đạt & Đàm Sao Mai (2021). Đánh giá độc tính cấp tính dịch cao chiết ethanol từ quả thể nấm vân chi (Coriolopsis aspera) ở Việt Nam trên chuột Swiss albino. Tạp chí Khoa học và Công nghệ. 49: 77-83.

    OECD (2019). Test No. 203: Fish, Acute Toxycity Test. 203: 24. doi:10.1787/9789264069961-en.

    Ông Bỉnh Nguyên, Nguyễn Đặng Kim Quyên, Lý Hải Triều, Bùi Thị Phương Quỳnh & Lê Văn Minh (2018). Khảo sát thành phần hoá học và hoạt tính sinh học của cao chiết Dây gắm (Gnetum montanum Markgr.). Tạp chí Khoa học và Công nghệ. (4): 15-21. DOI:10.55401/jst.v1i4.188.

    Pan X., Hou X., Zhang F., Tang P., Wan W., Su Z., Yang Y., Wei W., Du Z., Deng J. & Hao E. (2022). Gnetum montanum extract induces apoptosis by inhibiting the activation of AKT in SW480 human colon cancer cells. Pharmaceutical Biology. 60(1): 915-930. doi:10.1080/13880209.2022.2063340.

    Pan X., Hou X., Zhang F., Xie J., Wei W., Du Z., Deng J. & Hao E. (2024). Identification of chemical composition in Gnetum montanum extract and plasma components after oral administration in cynomolgus monkey by UPLC-Q-TOF-MS and its anti-tumor active components analysis. Journal of Pharmaceutical and Biomedical Analysis. 249(May): 116347. doi:10.1016/j.jpba.2024.116347.

    Sadino A., Sahidin I. & Wahyuni W. (2017). Acute toxycity of ethanol extract of Polygonum pulchrum Blume using brine shrimp lethality test method. Pharmacology and clinical pharmacy research. 2(2): 46-50. doi:10.15416/pcpr.v2i2.15210.

    Souza G.C., de Silva I.D.R., da Viana M.D., Melo N.C., de Sánchez-Ortiz B.L., Oliveira M.M.R., de Barbosa W.L.R., Ferreira I.M. & Carvalho J.C.T. (2019). Acute toxycity of the hydroethanolic extract of the flowers of acmella oleracea l. In zebrafish (danio rerio): Behavioral and histopathological studies. Pharmaceuticals, 12(173). https://doi.org/10.3390/ph12040173.

    U.S. FDA. (2005). Guidance for Industry Starting Dose in Initial Clinical Trials Estimating the Maximum Safe for Therapeutics in Adult Healthy Volunteers. In Guidance for Industry Starting Dose in Initial Clinical Trials Estimating the Maximum Safe for Therapeutics in Adult Healthy. p. 27. doi:10.1089/blr.2006.25.697.

    Wang W., Sun J., Liu C. & Xue Z. (2017). Application of immunostimulants in aquaculture: current knowledge and future perspectives. Aquaculture Research. 48(1): 1-23. doi:10.1111/are.13161.

    Xavier J. & Kripasana K. (2020). Acute toxycity of leaf extracts of Enydra fluctuans Lour in zebrafish (Danio rerio Hamilton). Scientifica. pp. 1-6. doi:10.1155/2020/3965376.