Interaction between Ghrelin and PACAP in regulating appetite behavior in the nucleus accumbens of mice

Date Received: 26-02-2025

Date Published: 07-03-2025

Views

2

Downloads

1

Section:

CHĂN NUÔI – THÚ Y – THỦY SẢN

How to Cite:

Trung, N. T., Yuki, K., Tuong, N. M., & Ha, N. T. T. (2025). Interaction between Ghrelin and PACAP in regulating appetite behavior in the nucleus accumbens of mice. Vietnam Journal of Agricultural Sciences, 22(12). https://doi.org/10.1234/121hc581

Interaction between Ghrelin and PACAP in regulating appetite behavior in the nucleus accumbens of mice

Nguyen Thanh Trung (*) , Yuki Kambe , Nguyen Manh Tuong , Nguyen Thi Thanh Ha

  • Tác giả liên hệ: nguyenthanhtrung@vnua.edu.vn
  • Keywords

    Ghrelin, food intake, nucleus accumben, glucagon-like peptide-1 receptor, PACAP, mouse

    Abstract


    The purpose of this study was to clarify the role and mechanism of ghrelin's effect on feeding behavior in mice. We used PACAP antagonist combined with monitoring food intake in mice. The study results showed that ghrelin increased food intake in mice after 1 hour of treatment. Notably, the decrease in food intake was more pronounced in PACAP knockout mice after ghrelin treatment, compared to the reduction in food intake observed in wild-type mice treated with the PACAP antagonist PACAP6-38. Furthermore, after 1 hour of ghrelin treatment, we observed a decrease in the expression level of the GLP1R receptor in the nucleus accumbens of PACAP knockout mice, suggesting that the expression of the GLP1R receptor in this region may be regulated by ghrelin. These findings provide evidence that ghrelin and PACAP interact in regulating food intake, but ghrelin may also act through other signaling pathways that are not entirely dependent on PACAP, and suggest that GLP1R antagonists may have potential in preventing weight gain and could serve as an important therapeutic strategy against obesity in the future.

    References

    Abizaid A., Liu Z.W., Andrews Z.B., Shanabrough M., Borok E., Elsworth J.D., Roth R.H., Sleeman M.W., Picciotto M.R., Tschöp M H., Gao X.B. & Horvath T.L. (2006). Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 116(12): 3229-39.

    Cabral A., López Soto E.J., Epelbaum J. & Perelló M. (2017). Is Ghrelin Synthesized in the Central Nervous System? Int J Mol Sci. 18(3).

    Cornejo M.P., Denis R.G.P., García Romero G., Fernández G., Reynaldo M., Luquet S. & Perello M. (2021). Ghrelin treatment induces rapid and delayed increments of food intake: a heuristic model to explain ghrelin’s orexigenic effects. Cellular and Molecular Life Sciences.

    (19): 6689-6708.

    Davis E.A., Wald H. S., Suarez A.N., Zubcevic J., Liu C.M., Cortella A.M., Kamitakahara A.K., Polson J.W., Arnold M., Grill H.J., de Lartigue G. & Kanoski S.E. (2020). Ghrelin Signaling Affects Feeding Behavior, Metabolism, and Memory through the Vagus Nerve. Curr Biol. 30(22): 4510-4518.e6.

    Egecioglu E., Skibicka K.P., Hansson C., Alvarez-Crespo M., Friberg P. A., Jerlhag E., Engel J.A. & Dickson S.L. (2011). Hedonic and incentive signals for body weight control. Rev Endocr Metab Disord. 12(3): 141-51.

    Jerlhag E., Egecioglu E., Dickson S.L., Andersson M., Svensson L. & Engel J.A. (2006). Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict Biol. 11(1): 45-54.

    Kambe Y., Nguyen T.T., Yasaka T., Nguyen T.T., Sameshima Y., Hashiguchi K., Shintani N., Hashimoto H., Kurihara T. & Miyata A. (2023). The Pivotal Role of Neuropeptide Crosstalk from Ventromedial-PACAP to Dorsomedial-Galanin in the Appetite Regulation in the Mouse Hypothalamus. Mol Neurobiol. 60(1): 171-182.

    Kambe Y., Yamauchi Y., Thanh Nguyen T., Thi Nguyen T., Ago Y., Shintani N., Hashimoto H., Yoshitake S., Yoshitake T., Kehr J., Kawamura N., Katsuura G., Kurihara T. & Miyata A. (2021). The pivotal role of pituitary adenylate cyclase-activating polypeptide for lactate production and secretion in astrocytes during fear memory. Pharmacol Rep. 73(4): 1109-1121.

    Kamegai J., Tamura H., Shimizu T., Ishii S., Sugihara H. & Oikawa S. (2001). Regulation of the ghrelin gene: growth hormone-releasing hormone upregulates ghrelin mRNA in the pituitary. Endocrinology. 142(9): 4154-7.

    Kanoski S.E., Hayes M.R. & Skibicka K.P. (2016). GLP-1 and weight loss: unraveling the diverse neural circuitry. Am J Physiol Regul Integr Comp Physiol. 310(10): R885-95.

    Kitazawa T., Kaiya H. & Taneike T. (2007). Contractile effects of ghrelin-related peptides on the chicken gastrointestinal tract in vitro. Peptides. 28(3): 617-24.

    Kristenssson E., Sundqvist M., Astin M., Kjerling M., Mattsson H., Dornonville de la Cour C., Håkanson R. & Lindström E. (2006). Acute psychological stress raises plasma ghrelin in the rat. Regul Pept. 134(2-3): 114-7.

    Li B., Chang L. & Zhuang Q.X. (2023). Histamine signaling in the bed nucleus of the stria terminalis modulates stress-induced anxiety. J Affect Disord. 335: 195-203.

    Livak K. J. & Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25(4): 402-408.

    Lutter M., Sakata I., Osborne-Lawrence S., Rovinsky S.A., Anderson J.G., Jung S., Birnbaum S., Yanagisawa M., Elmquist J.K., Nestler E.J. & Zigman J.M. (2008). The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nat Neurosci. 11(7): 752-3.

    Mani B.K., Osborne-Lawrence S., Mequinion M., Lawrence S., Gautron L., Andrews Z.B. & Zigman J. M. (2017). The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting. Mol Metab.

    (8): 882-896.

    Naleid A.M., Grace M.K., Cummings D.E. & Levine A.S. (2005). Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides. 26(11): 2274-9.

    Nguyen T.T., Kambe Y., Kurihara T., Nakamachi T., Shintani N., Hashimoto H. & Miyata A. (2020). Pituitary Adenylate Cyclase-Activating Polypeptide in the Ventromedial Hypothalamus Is Responsible for Food Intake Behavior by Modulating the Expression of Agouti-Related Peptide in Mice. Molecular Neurobiology. 57(4): 2101-2114.

    Peeters T.L. (2005). Ghrelin: a new player in the control of gastrointestinal functions. Gut.

    (11): 1638.

    Perello M., Cabral A., Cornejo M.P., De Francesco P.N., Fernandez G. & Uriarte M. (2019). Brain accessibility delineates the central effects of circulating ghrelin. J Neuroendocrinol.

    (7): e12677.

    Rudecki A.P. & Gray S.L. (2016). PACAP in the Defense of Energy Homeostasis. Trends in Endocrinology & Metabolism. 27(9): 620-632.

    Salfen B.E., Carroll J.A., Keisler D.H. & Strauch T.A. (2004). Effects of exogenous ghrelin on feed intake, weight gain, behavior, and endocrine responses in weanling pigs. J Anim Sci.

    (7): 1957-66.

    Sibilia V., Rindi G., Pagani F., Rapetti D., Locatelli V., Torsello A., Campanini N., Deghenghi R. & Netti C. (2003). Ghrelin protects against ethanol-induced gastric ulcers in rats: studies on the mechanisms of action. Endocrinology. 144(1): 353-9.

    Sitar-Tǎut A.V., Cozma A., Fodor A., Coste S.C., Orasan O.H., Negrean V., Pop D. & Sitar-Tǎut D.A. (2021). New Insights on the Relationship between Leptin, Ghrelin, and Leptin/Ghrelin Ratio Enforced by Body Mass Index in Obesity and Diabetes. Biomedicines. 9(11).

    Skibicka K. P., Hansson C., Alvarez-Crespo M., Friberg P.A. & Dickson S.L. (2011). Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience.

    : 129-37.

    So W.L., Hu J., Jeffs L., Dempsey H., Lockie S.H., Zigman J.M., Stark R., Reichenbach A. & Andrews Z.B. (2023). Ghrelin signalling in AgRP neurons links metabolic state to the sensory regulation of AgRP neural activity. Molecular Metabolism. 78: 101826.

    Spiegel K., Tasali E., Penev P. & Van Cauter E. (2004). Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med.

    (11): 846-50.

    Sun F., Lei Y., You J., Li C., Sun L., Garza J., Zhang D., Guo M., Scherer P. E., Lodge D. & Lu X.Y. (2019). Adiponectin modulates ventral tegmental area dopamine neuron activity and anxiety-

    related behavior through AdipoR1. Mol Psychiatry.

    (1): 126-144.

    Ueno H., Yamaguchi H., Kangawa K. & Nakazato M. (2005). Ghrelin: a gastric peptide that regulates food intake and energy homeostasis. Regul Pept. 126(1-2): 11-9.

    Uriarte M., De Francesco P.N., Fernández G., Castrogiovanni D., D'Arcangelo M., Imbernon M., Cantel S., Denoyelle S., Fehrentz J.A., Praetorius J., Prevot V. & Perello M. (2021). Circulating ghrelin crosses the blood-cerebrospinal fluid barrier via growth hormone secretagogue receptor dependent and independent mechanisms. Mol Cell Endocrinol. 538: 111449.

    Willesen M. G., Kristensen P. & Rømer J. (1999). Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology. 70(5): 306-16.

    Wu C.-S., Bongmba O.Y.N., Yue J., Lee J.H., Lin L., Saito K., Pradhan G., Li D.-P., Pan H.-L., Xu A., Guo S., Xu Y. & Sun Y. (2017). Suppression of GHS-R in AgRP Neurons Mitigates Diet-Induced Obesity by Activating Thermogenesis. International Journal of Molecular Sciences.

    (4): 832.

    Wu X., Tang M., Ma Q., Hu X. & Ji C. (2008). Effects of Exogenous Ghrelin on the Behaviors and Performance of Weanling Piglets. Asian-Australas J Anim Sci. 21(6): 861-867.