Evaluation on Drought Tolerance of Rice Lines with Indica Genetic Background Carrying Chromosome Segment Substitution from Wild Rice (Oryza rufipogon)or Japonica

Date Received: 21-10-2014

Date Accepted: 10-03-2015

##submissions.doi##:

Views

5

Downloads

2

Section:

NÔNG HỌC

How to Cite:

Cuong, P., Dien, D., Tuan, T., & Hanh, T. (2024). Evaluation on Drought Tolerance of Rice Lines with Indica Genetic Background Carrying Chromosome Segment Substitution from Wild Rice (Oryza rufipogon)or Japonica. Vietnam Journal of Agricultural Sciences, 13(2), 166–172. https://vie.vjas.vn/index.php/vjasvn/article/view/169

Evaluation on Drought Tolerance of Rice Lines with Indica Genetic Background Carrying Chromosome Segment Substitution from Wild Rice (Oryza rufipogon)or Japonica

Pham Van Cuong 1, 2, 3 , Doan Cong Dien 3 , Tran Anh Tuan 2 , Tang Thi Hanh 2

  • 1 Trung tâm nghiên cứu Cây trồng Việt Nam - Nhật Bản
  • 2 Khoa Nông học, Học viện Nông nghiệp Việt Nam
  • 3 Dự án JICA, Học viện Nông nghiệp Việt Nam
  • Keywords

    Rice, Indica, Japonica Oryza rufipogon, CSS line, drought tolerance

    Abstract


    Twenty chromosome segment substitution lines (CSSLs) developed from IR24 background (5 lines of Ruf ILs (IR24 × O. rufipogon), 15 lines of IAS (IR24 × Assominori - a Japonica cultivated rice) and IR24 were evaluated for drought tolerance at tillering stage. The 3-leaf seedlings were grown in Kimura B + 20% PEG6000 solution (drought treatment) or in Kimura B solution (non-drought treatment). The results showed that, the drought resistance index (DRI) correlated with the dry matter under drought and non-drought conditions with r = 0,614 and r = 0,604, respectively. The number of leaves, leaf area, root surface area, number of roots and root hairs in both CSSLs and IR24 were reduced in drought condition. But, there was no reduction in root numbers and root hairs numbers in CSSLs, which had higher DRI. The results also showed that, drought tolerance mechanism of IAS lines might involve the increase of root growth, water uptake and root-to-shoot water transport. However, the mechanism in Ruf ILs lines might involve the reduction of leaf number, leaf area and in company with increase of root growth and water uptake. These finding suggested that wild rice O. rufipogon and Asominori would be ideal materials for rice breeding for drought tolerance.

    References

    Amiard, V. and A. Morvan-Bertrand (2003). Fructans, But Not the Sucrosyl-Galactosides, Raffinose and Loliose, Are Affected by Drought Stress in Perennial Ryegrass. Plant Physiology, 132(4): 2218-2229.

    Anwar, J. and G. M. Subhani (2011). Drought tolerance indices and their correlation with yield in exotic wheat genotypes. Pak. J. Bot., 43(3): 1527-1530.

    Blum, A. (2011). Phenotyping and Selection. Plant Breeding for Water-Limited Environments, Springer New York, p. 153-216.

    Fischer, R. and R. Maurer (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5): 897-912.

    Hadiarto, T. and L.-S. Tran (2011). Progress studies of drought-responsive genes in rice. Plant Cell Reports, 30(3): 297-310.

    Nguyễn Tấn Hinh, Trương Văn Kính, Vũ Thị Hằng, Trần Nguyên Tháp (2005). Giống lúa chịu hạn CH208, Tạp chí Nông nghiệp và Phát triển nông thôn, 21: 23-25.

    IRRI (2002). Standard evaluation system for rice, Los Banos, Philippines.

    IRRI (2014). Retrieved 11/6/2014, from http://irri.org/component/cultivated+area.

    Jinhua, X., S. Grandillo, et al. (1996). Genes from wild rice improve yield. Nature (London), 384 (6606): 223-224.

    Kamoshita, A., R. C. Babu, et al. (2008). Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Research, 109(1-3): 1-23.

    Kubo T., Aida Y., Nakamura K., Tsunematsu H., Doi K., Yoshimura A. (2002). Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice. Breeding Science, 52: 319-325.

    Lafitte, R., A. Blum, et al. (2004). Using secondary traits to help identify drought-tolerant genotypes. Breeding Rice for Drought-prone Environments.

    Lu, Z. and P. M. Neumann (1999). Water Stress Inhibits Hydraulic Conductance and Leaf Growth in Rice Seedlings but Not the Transport of Water via Mercury-Sensitive Water Channels in the Root. Plant Physiology, 120(1): 143-152.

    Money, N. P. (1989). Osmotic Pressure of Aqueous Polyethylene Glycols: Relationship between Molecular Weight and Vapor Pressure Deficit. Plant Physiology, 91(2): 766-769.

    Poorter, H. and C. Remkes (1990). Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia, 83(4): 553-559.

    Roberts, S. K. (1998). Regulation of K+ Channels in Maize Roots by Water Stress and Abscisic Acid. Plant Physiology, 116(1): 145-153.

    Trần Anh Tuấn, Vũ Ngọc Thắng, Vũ Đình Hoà (2007). Ảnh hưởng của hạn đến một số chỉ tiêu sinh lý và năng suất của một số giống đậu tương trong điều kiện nhà lưới. Tạp chí Khoa học kỹ thuật Nông nghiệp, 3: 17-22.

    Vũ Thị Thu Hiền, Phạm Văn Cường (2012). Phân tích đa dạng di truyền mẫu giống lúa canh tác nhờ nước trời bằng chỉ thị SSR, Tạp chí khoa học và Phát triển, 10(1): 15-24.

    Yoshida, S., D. A. Forno (1971). Laboratory manual for physiological studies of rice. Los Banos, Philippines, International Rice Research Institute (IRRI).