The Crosstalk Between nicotine and PACAP in the Appetite Regulation in the Mouse Hypothalamus

Date Received: 31-10-2022

Date Accepted: 27-01-2023

Date Published: 03-07-2025

Views

1

Downloads

0

Section:

CHĂN NUÔI – THÚ Y – THỦY SẢN

How to Cite:

Trung, N., Kambe, Y. ., Anh, T., & Cuong, N. (2025). The Crosstalk Between nicotine and PACAP in the Appetite Regulation in the Mouse Hypothalamus. Vietnam Journal of Agricultural Sciences, 21(1), 31–39. https://doi.org/10.31817/tckhnnvn.2023.21.1.

The Crosstalk Between nicotine and PACAP in the Appetite Regulation in the Mouse Hypothalamus

Nguyen Thanh Trung (*) , Yuki Kambe , Tran Thi Anh , Nguyen Manh Cuong

  • Tác giả liên hệ: [email protected]
  • Keywords

    Nicotine, food intake, body weight, PACAP, mouse

    Abstract


    Nicotine is one of the causes of suppressed appetite. Many reports have shown the underlying neurobiological mechanisms of the anorexia effects of cigarette smoking through nicotine receptors in the brain. However, whether nicotine may act through an additional pathway regulated by polypeptide pituitary adenylate cyclase (PACAP) in the brain is yet to be determined. To address these issues, we used pharmacological combination such as overexpression, knockdown PACAP gene in VMH and feeding in this study. At first, we found that dose-dependent nicotine decreased the food intake in mice treated daily for 5 days. In addition, more pronounced effects of inhibition feeding were observed in PACAP knockout mice. Furthermore, overexpression of PACAP in the VMH increased the expression while knockdown of PACAP in the VMH decreased the expression of α4 of Nicotine. Taken together, these results suggested that the expression of α4 receptor of Nicotine in the hypothalamus might be regulated by PACAP in the VMH.

    References

    Albanes D., Jones D. Y., Micozzi M. S. & Mattson M. E. (1987). Associations between smoking and body weight in the US population: analysis of NHANES II. Am J Public Health. 77(4): 439-44.

    Aurnhammer C., Haase M., Muether N., Hausl M., Rauschhuber C., Huber I., Nitschko H., Busch U., Sing A., Ehrhardt A. & Baiker A. (2011). Universal Real-Time PCR for the Detection and Quantification of Adeno-Associated Virus Serotype 2-Derived Inverted Terminal Repeat Sequences. Human Gene Therapy Methods.

    (1): 18-28.

    Bäckberg M. & Meister B. (2004). Abnormal cholinergic and GABAergic vascular innervation in the hypothalamic arcuate nucleus of obese tub/tub mice. Synapse. 52(4): 245-57.

    Breslau N. (1995). Psychiatric comorbidity of smoking and nicotine dependence. Behav Genet.

    (2): 95-101.

    Brunzell D.H., Stafford A.M. & Dixon C.I. (2015). Nicotinic receptor contributions to smoking: insights from human studies and animal models. Current addiction reports. 2(1): 33-46.

    Burling T.A. & Ziff D.C. (1988). Tobacco smoking: a comparison between alcohol and drug abuse inpatients. Addict Behav. 13(2): 185-90.

    Decker M.W., Brioni J.D., Bannon A.W. & Arneric S.P. (1995). Diversity of neuronal nicotinic acetylcholine receptors: lessons from behavior and implications for CNS therapeutics. Life Sci.

    (8): 545-70.

    Fulkerson J.A. & French S.A. (2003). Cigarette smoking for weight loss or control among adolescents: gender and racial/ethnic differences. J Adolesc Health. 32(4): 306-13.

    Grunberg N.E. (1982). The effects of nicotine and cigarette smoking on food consumption and taste preferences. Addict Behav. 7(4): 317-331.

    Hughes J.R., Higgins S.T. & Bickel W.K. (1994). nicotine withdrawal versus other drug withdrawal syndromes: similarities and dissimilarities. Addiction. 89(11): 1461-70.

    Jang M.H., Shin M.C., Lim B.V., Chung J.H., Kang H.S., Kang S.A., Choue R.W., Kim E.H. & Kim C.J. (2002). nicotine administration decreases nitric oxide synthase expression in the hypothalamus of food-deprived rats. Neurosci Lett. 322(1): 29-32.

    Kambe Y., Yamauchi Y., Thanh Nguyen T., Thi Nguyen T., Ago Y., Shintani N., Hashimoto H., Yoshitake S., Yoshitake T., Kehr J., Kawamura N., Katsuura G., Kurihara T. & Miyata A. (2021). The pivotal role of pituitary adenylate cyclase-activating polypeptide for lactate production and secretion in astrocytes during fear memory. Pharmacol Rep. 73(4): 1109-1121.

    Kedikian X., Faillace M.P. & Bernabeu R. (2013). Behavioral and Molecular Analysis of Nicotine-Conditioned Place Preference in Zebrafish. PLOS ONE. 8(7): e69453.

    Levin E.D., Morgan M.M., Galvez C. & Ellison G.D. (1987). Chronic nicotine and withdrawal effects on body weight and food and water consumption in female rats. Physiol Behav. 39(4): 441-4.

    Meister B., Gömüç B., Suarez E., Ishii Y., Dürr K. & Gillberg L. (2006). Hypothalamic proopiomelanocortin (POMC) neurons have a cholinergic phenotype. Eur J Neurosci.

    (10): 2731-40.

    Mineur Y.S., Abizaid A., Rao Y., Salas R., DiLeone R.J., Gündisch D., Diano S., De Biasi M., Horvath T.L., Gao X.B. & Picciotto M.R. (2011). nicotine decreases food intake through activation of POMC neurons. Science. 332(6035): 1330-2.

    Nguyen T.T., Kambe Y., Kurihara T., Nakamachi T., Shintani N., Hashimoto H. & Miyata A. (2020). Pituitary Adenylate Cyclase-Activating Polypeptide in the Ventromedial Hypothalamus Is Responsible for Food Intake Behavior by Modulating the Expression of Agouti-Related Peptide in Mice. Molecular Neurobiology.

    (4): 2101-2114.

    Nisell M., Nomikos G.G. & Svensson T.H. (1995). nicotine dependence, midbrain dopamine systems and psychiatric disorders. Pharmacol Toxicol. 76(3): 157-62.

    Perkins K.A., Epstein L.H., Sexton J.E., Solberg-Kassel R., Stiller R.L. & Jacob R.G. (1992). Effects of nicotine on hunger and eating in male and female smokers. Psychopharmacology (Berl). 106(1): 53-9.

    Rudecki A.P. & Gray S.L. (2016). PACAP in the Defense of Energy Homeostasis. Trends in Endocrinology & Metabolism. 27(9): 620-632.

    Smith M.L., Souza F.G.O., Bruce K.S., Strang C.E., Morley B.J. & Keyser K.T. (2014). Acetylcholine receptors in the retinas of the á7 nicotinic acetylcholine receptor knockout mouse. Molecular vision. 20: 1328-1356.

    Taillebois E., Beloula A., Quinchard S., Jaubert-Possamai S., Daguin A., Servent D., Tagu D., Thany S. H. & Tricoire-Leignel H. (2014). Neonicotinoid Binding, Toxicity and Expression of Nicotinic Acetylcholine Receptor Subunits in the Aphid Acyrthosiphon pisum. PLOS ONE.

    (5): e96669.

    Tao Y.X. (2010). The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr Rev. 31(4): 506-43.