Date Received: 19-03-2025
Date Published: 21-03-2025
##submissions.doi##: https://doi.org/10.1234/r6067r67
Views
Downloads
How to Cite:
Effects of Mineral Supplementation in Feed on the Reproductive Efficiency of Black Apple Snail (Pila polita Deshayes, 1830)
Keywords
Black apple snail, growth, mineral supplements into feed, spawning, survival rate
Abstract
This study aimed to evaluate the effects of mineral supplementation in feed on the reproductive efficiency of black apple snail (Pila polita) during maturity cultivation. Snail broodstocks (height: 37.5 - 42.6 mm/ind; equivalent to 75 days of age) were reared in the tarpaulin tanks (1 × 1 × 1m) at a density of 60 ind./tank (the ratio of male: female was 1: 1). The food was supplemented with Pro Mix minerals at five different levels: (1) Control without Pro Mix supplementation (No.Mi-F); (2) 3% minerals (Mi3-F); (3) 5% minerals (Mi5-F); (4) 7% minerals (Mi7-F) and (5) 9% minerals (Mi9-F). After 120 days of culture, the Gonadosomatic Index (GSI) of snails was highest in Mi5-F (6.50% in female; 14.1% in male) and significantly different (P <0.05) compared to No.Mi-F (3.66%; 6.10%). In Mi7-F treatment, the broodstocks showed spawning frequency of 1.00 clutch/week/m2 and a fecundity of 0.53 clutch/female, followed by Mi5-F (0.92 clutch/week/m2; 0.49 clutch/female) and were different (P <0.05) from the No.Mi-F treatment
(0.65 clutch/week/m2; 0.35 clutch/female). The study results indicated that the addition of Pro Mix to feed at a level of 5% minerals significantly enhanced GSI and the reproductive efficiency of the black apple snails.
References
Beeby A. & Richmond L. (2011). Magnesium and the Deposition of Lead in the Shell of Three Populations of the Garden Snail Cantareus aspersus. Environmental Pollution. 159(6): 1667-1672. doi.org/10.1016/ j.envpol.2011.02.040.
Chaitanawisuti N., Sungsirin T. & Piyatiratitivorakul S. (2010). Effects of dietary calcium and phosphorus supplementation on the growth performance of juvenile spotted babylon Babylonia areolata culture in a recirculating culture system. Aquaculture International. 18(3): 303-313. DOI:10.1007/s10499-009-9244-8.
Chandra A.K., Sengupta P., Goswami H., & Sarkar,M. (2013). Effects of Dietary Magnesium on Testicular Histology, Steroidogenesis, Spermatogenesis and Oxidative Stress Markers in Adult Rats. Indian journal of experimental biology. 51(1): 37-47.
Cheng K.M., Hu C.Q., Liu Y.I., Zheng S.X. & Qi X.J. (2006). Effects of dietary calcium, phosphorus and calcium/phosphorus ratio on the growth and tissue mineralization of Litopenaeus vannamei reared in lowsalinity water. Aquaculture. 251: 472-483. doi:10.1016/j.aquaculture.2005.06.022.
Coote T.A., Hone P.W. Kenyon R. & Maguire G.B. (1996). The effect of different combinations of dietary calcium and phosphorus on the growth of juvenile Haliotis laevigata. Aquaculture. 145(1-4): 267-279. DOI:10.1016/S0044-8486(96)01303-8.
Egonmwan R.I. (2008) Effects of dietary calcium on growth and oviposition of the African land snail Limicolaria flammea (Pulmonata: Achatinidae). Revista de biología tropical. 56(1): 333-343. DOI: 10.15517/rbt.v56i1.5528.
Emelue G.U. & Omonzogbe E.A. (2018). Growth Performance of African Giant Land Snails (Archachatina marginata) Fed with Feed Formulated with Different Calcium Sources. Malaysian Journal of Sustainable Agriculture. 2(1): 1-4. DOI:10.26480/mjsa.01.2018.01.04.
Fournie J. & Chetail M. (1982). Evidence for a mobilization of calcium reserves for reproduction requirements in Deroceras reticulatum (Syn: Agriolimax reticulatus). Malacologia. 22: 285-291.
Gaál K.K., Sáfár O., Gulyás L. & Stadler P. (2004). Magnesium in Animal Nutrition. Journal of the American College of Nutrition. 23. 754s-757s. DOI:10.1080/07315724.2004.10719423.
Gallagher M.L., Bayer R.C., Rittenburg J.H. & Leavitt D.F. (1982). Studies on the mineral requirements of the adult American lobster. The Progressive Fish-Culturist. 44(4): 210-212. https://doi.org/10.1577/1548-8659(1982)44[210:SOTMRO]2.0.CO;2.
Gouveia A.R., Pearce-Kelly P., Quicke D.L.J. & Leather S.R. (2011). Effects of different calcium concentrations supplemented on the diet of Partula gibba on their morphometric growth parameters, Weight and Reproduction Success. Malacologia. 54(1-2): 139-146. DOI:10.4002/040.054.0105.
Hotopp K.P. (2002). Land Snails and Soil Calcium in Central Appalachian Mountain Forest. Southeastern Naturalist. 1(1): 27-44.
Hunter R.D., & Lull W.W. (1977). Physiologic and environmental factors influencing the calcium-to-tissue ratio in populations of three species of freshwater pulmonate snails. Oecologia. 29: 205-218. DOI:10.1007/BF00345695.
Huskinson E., Maggini S. & Ruf M. (2007). The Roles of Vitamins and Mineral in Energy Metabolism and Well-being. The Journal of international medical research. 35(3): 277-289. doi: 10.1177/ 147323000703500301.
Ireland, M.P. (1991). The effect of dietary calcium on growth, shell thickness and tissue calcium distribution in the snail Achatina fulica. Comparative Biochemistry and Physiology Part A: Physiology: 98(1): 11l-116. doi:10.1016/0300-9629(91)90587-3.
Ireland, M.P. (1993). The effect of diamox at two dietary calcium levels on growth, shell thickness and distribution of Ca, Mg, Zn, Cu, P in the tissues of the snail Achatina fulica. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology. 104(1): 21-28. DOI:10.1016/0742-8413(93)90105-T.
Ireland M.P. & Marigomez I. (1992). The influence of dietary calcium on the tissue distribution of Cu, Zn, Mg and P and histological changes in the digestive gland cells in the snail Achatina fulica. Journal of Molluscan Studies. 58: 157-168.
Jatto O.E., Asia I.O. & Medjor W.E. (2010). Proximate and Mineral Composition of Different Species of Snail Shell. Pacific Journal of Science and Technology. 11: 416-419.
Kanazawa A., Teshima S. & Sasaki M. (1984). Requirements of the juvenile prawn for calcium, phosphorus, magnesium, potassium, copper, manganese and iron. Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University. 33: 63-71.
Karamoko M. (2009). Étude de la biologie, de l’écologie et du comportement d’un escargot terrestre d’intérêt économique, Limicolaria flammea. Docteur de L’Université de Cocody-Abidjan.
Karamoko M., Sika Piba N.A., Ouattara S., Otchoumou A. & Kouassi K.P. (2014). Effets du calcium alimentaire sur les paramètres de reproduction de l’escargot Limicolaria flammea, en élevage hors-sol. Afrique science. 10(4): 245-256.
Karmanska A., Stanczak A. & Karwowski B. (2015). Magnez Aktualny Stan Wiedzy. Bromatologia i Chemia Toksykologiczna. 4: 677-689.
Lê Văn Bình & Ngô Thị Thu Thảo (2017). Ảnh hưởng của thức ăn và tỉ lệ giới tính đến kết quả nuôi vỗ ốc bươu đồng (Pila polita). Tạp chí Nông nghiệp và phát triển nông thôn. 7: 101-111.
Le Van Binh & Ngo Thi Thu Thao (2019). Effects of Calcium Levels in Artificial Pellet Feed on the Growth and Survival Rate of Black Apple Snails (Pila polita). Vietnam Journal of Agricultural Sciences (VJAS). 2(2): 387-396.
Lê Văn Bình & Ngô Thị Thu Thảo (2020). Một số đặc điểm sinh học sinh sản của ốc bươu đồng (Pila polita) phân bố ở Đồng bằng sông Cửu Long. Tạp chí Khoa học Trường Đại học Cần Thơ.
(2b): 117-126.
Lê Văn Bình & Ngô Thị Thu Thảo (2019). Kết quả nuôi vỗ ốc bươu đồng (Pila polita) dưới ảnh hưởng của hàm lượng canxi khác nhau trong thức ăn. Tạp chí Khoa học Trường Đại học Cần Thơ.
(5b): 48-56.
Li A.J., Huang B.C., Lou W.F. & Xu J.M. (1986). The effects of dietary calcium, phosphorus and Ca:P ratio on the growth and development of prawn Penaeus orientalis. Journal of Ocean University of Qingdao. 16: 10-17.
Lovell R.T. (1989). Nutrition and Feeding of Fish. Van Nostrand Reinhold, New York. doi.org/10.1007/ 978-1-4757-1174-5.
Ngô Thị Thu Thảo & Lê Văn Bình (2017a). Hiệu quả của việc bổ sung canxi vào thức ăn trong quá trình ương giống ốc bươu đồng (Pila polita). Tạp chí Khoa học Trường Đại học Cần Thơ. 52b: 70-77. DOI:10.22144/ctu.jvn.2017.126.
Ngô Thị Thu Thảo & Lê Văn Bình (2020). Đặc điểm sinh học, kỹ thuật sản xuất giống và nuôi thương phẩm ốc bươu đồng (Pila polita). Nhà xuất bản Nông nghiệp.
Pu F. Chen N. & Xue S. (2016). Calcium Intake, Calcium Homeostasis and Health. Food Science and Human Wellness. 5(1): 8-16. doi: 10.1016/j. fshw.2016.01.001.
Rygało-Galewska A., Zgli´nska K., Roguski M., Roman K., Bendowski W., Bie´n D. & Niemiec T. (2023) Effect of Different Levels of Calcium and Addition of Magnesium in the Diet on Garden Snails’ (Cornu aspersum) Condition, Production, and Nutritional Parameters. Agriculture. 13: 2055. DOI:10.3390/agriculture13112055.
Tan B., Mai K. & Liufu Z. (2001). Response of juvenile abalone, Haliotis discus hannai, to dietary calcium, phosphorus and calcium/phosphorus ratio. Aquaculture. 198(1): 141-158. doi: 10.1016/S0044-8486(00)00595-0.
Vélez-Arellano N., García-Domínguez F.A., Lluch-Cota D.B., Gutiérrez-González J.L., Salcido-Guevara L.A. & Sanchez-Cardenas, R. (2017). Morphophysiological Indices of the Green Abalone Haliotis fulgens Philippi, 1845 at Mexican Ocean Pacific Coast. Turkish Journal of Fisheries and Aquatic Sciences. 17(1): 31-39. doi:10.4194/1303-2712-v17_1_05.
Wacker A. & Baur B. (2004). Effects of protein and calcium concentrations of artificial diets on the growth and survival of the land snail Arianta arbustorum. Invertebrate Reproduction and Development. 46(1): 47-53. doi.org/10. 1080/0792 4259.2004.9652605.