Date Received: 25-07-2014
Date Accepted: 25-09-2014
Date Published: 06-08-2025
##submissions.doi##: https://doi.org/10.31817/tckhnnvn.2014.12.7.
Views
Downloads
How to Cite:
Morpho-histological Study of Somatic Embryogenesis in Ngoc Linh Ginseng (Panax vietnamensis Ha et Grushv.)
Keywords
Panax vietnamensis, histology, scanning electron microscopy, somatic embryos
Abstract
Somatic embryogenesis is a process where a plant or embryo is derived from a single somatic cell or group of somatic cells. When compared to other methods of vegetative propagation, somatic embryogenesis has more applications, such as clonal propagation of genetically uniform plant material, elimination of viruses, provision of source tissue for genetic transformation, generation of whole plants from single cells and development of synthetic seed technology. The aim of this study was to establish an in vitro system for the induction of somatic embryo in Ngoc Linh ginseng (Panax vietnamensis Ha et Grushv.) – a precious and economic medical herb of Vietnam. Leaf explants of 0.5 x 0.5 cm in size were cultured on Murashige and Skoog (MS) medium supplemented with 1.0 mg.l-12,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg.l-1 naphthaleneacetic acid (NAA) for callus induction. Callus explants were cultured on MS medium supplemented with various concentrations of 2,4-D, kinetin and NAA to establish embryogenic culture. After 8 weeks of culture, globular structures were obtained. The highest efficiency of somatic embryo production was achieved on MS medium supplemented with 1.0 mg.l-1 2,4-D, 0.2 mg.l-1 kinetin and 0.5 mg.l-1 NAA. After 12 weeks of culture, all stages of somatic embryogenesis, including globular, heart-, torpedo- and cotyledonary-shaped embryos were observed in embryogenic clusters. Histological observation and scanning electron microscopy (SEM) analysis revealed that the embryos had bipolar structure.
References
Ananya P., Kalyan M. and Sarmistha S.R. (2009). Effect of polyamines on in vitro somatic embryogenesis in Momordica charantia L. Plant Cell Tiss. Org. Cult., 97: 303-311.
Von Arnold S. (1987). Effect of sucrose on starch accumulation in an adventitious bud formation on embryos of Picea abies. Ann. Bot., 59: 15-22.
Avci S. and Can E. (2006). Efficient somatic embryogenesis from immature inflorescences of Dallisgrass (Paspalum dilatatum Poir). Propag. Ornam. Plants, 6: 134-139.
Barciela J. and Vieitez A.M. (1993). Anatomicai sequence and morphometric analysis during somatic embryogenesis on cultured cotyledon explants of Camellia japonica L. Ann. Bot., 71: 395-404.
Bhaskaran S. and Smith R.H. (1990). Regeneration in cereal tissue cultures. Crop Sci., 30: 1328-1337.
Borkird C., Choi J.H. and Sung Z.R. (1986). Effect of 2,4-dichlorophenoxyacetic acid on the expression of embryogenic program of carrot. Plant Physiol., 81: 1143-1145.
Canhoto J.M. and Cruz G.S. (1996). Histodifferentiation of somatic embryos in cotyledons of pineapple guava (Feijoa sellowiana Berg). Protoplasma, 191: 34-45.
Canhoto J.M., Lopes M.L. and Crus G.S. (1999). Somatic embryogenesis and plant regeneration in myrtle (Myrtaceae). Plant Cell Tiss. Org. Cult., 57: 13-21.
Cruz G.S., Canhoto J.M. and Abreu M.A. (1990). Somatic embryogenesis and plant regeneration from zygotic embryos of Feijoa sellowiana Berg. Plant Sci., 66: 263-270.
Dunstan D.I., Tautorus T.E. and Thorpe T.A. (1995). Somatic embryogenesis in woody plants. In: In vitro embryogenesis in plants,Thorpe T.A. (ed). Kluwer Academic Publishers, Dordrecht, 471-540.
Dương Tấn Nhựt, Hoàng Xuân Chiến, Nguyễn Bá Trực, Nguyễn Bá Nam, Trần Xuân Tình, Vũ Quốc Luận, Nguyễn Văn Bình, Vũ Thị Hiền, Trịnh Thị Hương, Nguyễn Cửu Thành Nhân, Lê Nữ Minh Thùy, Lý Thị Mỹ Nga, Thái Thương Hiền và Nguyễn Thành Hải (2010). Nhân giống vô tính cây sâm Ngọc Linh (Panax vietnamensis Ha et Grushv.).Tạp chí Công nghệ Sinh học,8 (3B): 1211-1219.
Fry S.C. and Wangermann E. (1976). Polar transport of auxin through embryos. New Phyt., 77: 313-317.
Gahan P.B. (1984). Plant histochemistry and cytochemistry: an introduction. Academic Press, London.
Gill R. and Saxena P.K. (1992). Direct somatic embryogenesis and regeneration of plant from seedling explant of peanut (Arachis Hypogae L.). Can. J. Bot., 70: 1186-1192.
Gupta P.K. and Holmstrom D. (2005). Double staining technology for distinguishing embryogenic cultures. In: Protocol for somatic embryogenesis in woody plants,Jain S.M. and Gupta P.K. (eds). Springer Publishers, pp. 573-575.
Haliloglu K. (2006). Efficient regeneration system from wheat leaf base segments. Biol. Plant., 50(3):
-330.
Halperin W. (1970). Embryos from somatic plant cells. In: Control mechanism in the expression of cellular phenotypes, Padykula H. A. (ed). Symp. Int. Soc. Cell Biol., 9: 169.
Halperin W. and Wetherell D.F. (1964). Adventive embryony in tissue cultures of the wild carrot, Daucus carota. Am. J. Bot., 5l: 274-283.
Hamidou S.F., Peggy O., Lloyd M. and Peng W.C. (2005). Putrescine inhances somatic embryogenesis and plant regeneration in upland cotton. Plant Cell Tiss. Org. Cult., 81: 91-95.
Hartweck L.M., Lazzeri P.A., Cui D., Collins G.B. and Williams E.G. (1988). Auxin-orientation effects on somatic embryogenesis from immature soybean cotyledons. In Vitro Cell. Dev. Biol., 24: 821-828.
Lazzeri P.A., Hildebrand D.F. and Collins G.B. (1987). Soybean somatic embryogenesis: effects of hormones and culture manipulations. Plant Cell Tiss. Org. Cult., 10: 197-208.
Liu C.M., Xu Z.H. and Chua N.H. (1993). Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell, 5: 621-630.
Maheshwaran G. and Williams E.G. (1986). Somatic embryogenesis factors influencing coordinate behavior of cells as an embryogenic group. Ann. Bot., 57: 442-462.
Malik K.A. and Saxena P.K. (1992). Regeneration in Phaseolus vulgaris L.: High frequency induction of direct shoot formation in intact seedlings by N6-benzylaminopurine and thidiazuron. Planta, 186: 384-389.
Michler C.H. (1995). Somatic embryogenesis in Populus spp. In: Somatic embryogenesis in Woody Plants,Jain S.M., Gupta P.K. and Newton R.J. (eds). Kluwer Academic Publishers, Dordrecht, pp. 89-97.
Murashige T. and Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant., 15: 473-497.
Nguyễn Ngọc Dung (1995). Nhân giống sâm Ngọc Linh(Panax vietnamensis Ha et Grushv.) bằng con đường sinh học. Nhà xuất bản Nông nghiệp, tr.
-100.
Nguyễn Thượng Dong, Trần Công Luận, Nguyễn Thị Thu Hương (2007). Sâm Việt Nam và một số cây thuốc họ Nhân sâm. Nhà xuất bản Khoa học và Kỹ thuật, tr. 109-110.
Quiroz-Figueroa F., Rojas-Herrera R., Galaz-Avalos R.M. and Layola-Vargas M. (2006). Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tiss. Org. Cult., 86: 285-301.
Rodriguez A.P.M. and Wetzstein H.Y. (1994). The effect of auxin type and concentration on pecan (Carya illinoinensis) somatic embryo morphology and subsequent conversion into plants. Plant Cell Rep., 13: 607-611.
Schiavone F.M. and Cooke T.J. (1987). Unusual patterns of somatic embryogenesis in domesticated carrot: developmental effects of exogenous auxins and auxin transport inhibitors. Cell Diff., 21:
-62.
Sharma A.K. and Sharma A. (1980). Chromosome techniques. Theory and practice, 3rd ed. Butterworths, London.
Shohana P., Yeon-Yu K., Rama K.P., Yu-Jin K., Neha G.W. and Deok-Yung K. (2009). Identification and characterization of spermidine synthase gene from Panax ginseng. Mol. Biol. Rep., 37: 923-932.
Trần Công Luận (2003). Kết quả nghiên cứu về hóa học sâm Việt Nam. Hội thảo bảo tồn và phát triển sâm Ngọc Linh tại tỉnh Quảng Nam, tr. 62-75.
Umehara M. and Kamada H. (2005). Development of the embryo proper and the suspensor during plant embryogenesis. Plant Biotechnol., 22: 253-260.
Vanildo S., Eny S.F., Walter H. and Migue P.G. (2004). Effect of plant growth regulators on the cellular growth and levels of intracellular protein, starch and polyamines in embryogenic suspension of Pinus taeda. Plant CellTiss. Org. Cult.,76: 53-60.
Wetzstein H.Y. and Baker C.M. (1993). The relationship between somatic embryo morphology and conversion in peanut (Arachis hypogaea L.). Plant Sci., 92: 81-89.