Ngày nhận bài: 17-05-2025
Ngày duyệt đăng: 29-10-2025
Ngày xuất bản: 24-11-2025
Lượt xem
Download
Chuyên mục:
Cách trích dẫn:
ĐÁNH GIÁ HOẠT TÍNH PREBIOTIC CỦA CHIẾT XUẤT TỎI BỞI VI KHUẨN Lactobacillus plantarum CMT1
Từ khóa
Chất chiết tỏi, Lactobacillus plantarum, prebiotic, enzyme ngoại bào
Tóm tắt
Nghiên cứu này nhằm đánh giá khả năng sử dụng chất chiết tỏi và tăng trưởng của lợi khuẩn Lactobacillus plantarum CMT1 khi bổ sung prebiotic từ chiết xuất tỏi như là nguồn carbon trong điều kiện phòng thí nghiệm. Nghiên cứu bao gồm 5 thí nghiệm: (1) đánh giá khả năng sử dụng prebiotic; (2) đánh giá sự tăng trưởng của vi khuẩn L. plantarum CMT1 trong môi trường có bổ sung chất chiết tỏi; (3) đánh giá khả năng ức chế vi khuẩn gây bệnh cho tôm; (4) đánh giá chỉ số prebiotic của chiết xuất tỏi và (5) xác định khả năng tiết enzyme ngoại bào của vi khuẩn L. plantarum CMT1 khi nuôi trong môi trường có bổ sung chiết xuất tỏi. Kết quả thí nghiệm cho thấy lợi khuẩn Lactobacillus plantarum CMT1 có thể sử dụng chiết xuất tỏi như là nguồn carbon trong quá trình lên men lactic. Sau 48 giờ nuôi cấy, sự phát triển của lợi khuẩn L. plantarum CMT1 trong môi trường có bổ sung chất chiết tỏi khác biệt có ý nghĩa so với nghiệm thức đối chứng. Ngoài ra, việc bổ sung chất chiết tỏi làm tăng cường hoạt động enzyme amylase, protease và leu-aminopeptidase so với nghiệm thức đối chứng. Kết quả nghiên cứu cho thấy bổ sung 1% chất chiết xuất tỏi kích thích sự phát triển của lợi khuẩn L. plantarum CMT1 và ức chế sự phát triển của vi khuẩn Vibrio parahaemolyticus và Vibrio harveyi.
Tài liệu tham khảo
Abidin Z., Huang H.T., Hu Y.F., Chang J.J., Huang C.Y., Wu Y.S. & Nan F.H. (2022). Effect of dietary supplementation with Moringa oleifera leaf extract and Lactobacillus acidophilus on growth performance, intestinal microbiota, immune response, and disease resistance in whiteleg shrimp (Penaeus vannamei). Fish & Shellfish Immunology. 127: 876-890. https://doi.org/10.1016/j.fsi.2022.07.007.
Adebiyi F.G., Ologhobo A.D. & Adejumo I.O. (2017). Efficacy of Allium sativum as growth promoter, immune booster and cholesterol-lowering agent on broiler chickens. Asian Journal of Animal Science. 11(5): 202-213.
Ankri S. & Mirelman D. (1999). Antimicrobial properties of allicin from garlic. Microbes and Infection. 1(2): 125-129.
APHA (2017). Standard Methods for the Examination of Water and Wastewater, 23rd Edition. American Public Health Association. Washington DC 20005.
Barratt M.J., Nuzhat S. & Ahsan K. (2022). Bifidobacterium infantis treatment promotes weight gain in Bangladeshi infants with severe acute malnutrition. Science Translational Medicine. 14(640): eabk1107.
Bernfeld P. (1955). Amylases, α and β. In: Abelson J., Simon M., Verdine G., Pyle S. (Eds.), Methods in Enzymology. Academic Press. pp. 149-158.
Bozkurt M., Aysul N., Kucukyilmaz K., Aypak S., Ege G., Catli A.U., Aksit H., Coven F., Seyrek K. & Cinar M. (2014). Efficacy of in-feed preparations of an anticoccidial, multienzyme, prebiotic, probiotic, and herbal essential oil mixture in healthy and Eimeria spp. -infected broilers. Poultry Science. 93: 389-399.
Bucio A., Hartemink R., Schrama J.W., Verreth J. & Rombouts F.M. (2006). Presence of Lactobacilli in the intestinal content of freshwater fish from a river and from a farm with a recirculation system. Food Microbiology. 23(5):476-482.
Corzo-Martinez M., Corzo N. & Villamiel M. (2007) Biological Properties of Onions and Garlic. Trends in Food Science and Technology. 18: 609-625.
Ezquerra J.M., Garcia-Carreno F.L., Guillermo A.M. & Haard N.F. (1999). Effect of feed diet on aminopeptidase activities from the hepatopancreas of white shrimp (Penaeus vannamei). Journal of Food Biochemistry. 23: 59-74.
Fei M.L., Tong L.I., Wei L.I. & De Yang L. (2015). Changes in antioxidant capacity, levels of soluble sugar, total polyphenol, organosulfur compound and constituents in garlic clove during storage. Industrial Crops and Prodution. 69: 137-142.
Figueroa-González I., Rodríguez-Serrano G. & Gómez-Ruiz l. (2019). Prebiotic effect of commercial saccharides on probiotic bacteria isolated from commercial products. Food Science Technology (Brazil). 39 (3): 747-753.
Fuhren J., Rösch C., Napel M.T., Schols H.A. & Kleerebezem M. (2020). Synbiotic matchmaking in Lactobacillus plantarum: Substrate screening and gene-trait matching to characterize strain-specific carbohydrate utilization. Applied and Environmental Microbiology. 86(18)
Fuller R. & Gibson G.R. (1998). Probiotics and prebiotics: microflora management for improved gut. Clinical Microbiology and Infection. 4: 477-48
Giang H.T., Hai V.H., Tu P.T.C., Ngan P.T.T. & Ut V.N. (2021). Screening utilization of different natural prebiotic extracts by probiotic Lactobacillus sp. for development of synbiotic for aquaculture uses. Can Tho University Journol of Science. 13: 96-105.
Hang X. (2005). Isolation and identification of garlic polysaccharide. Food Science. 26: 48-51.
Hattingh M., Alexander A., Meijering I., Van Reenen C.A. & Dicks L.M.T. (2025). Amylolytic strains of Lactobacillus plantarum isolatedfrom barley. African Journal of Biotechnolgy. 14(4): 310-318.
Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B. & Sanders M.E. (2014). Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology. 11(8): 506-514.
Huỳnh Trường Giang, Nguyễn Hoàng Nhật Uyên, Vũ Hùng Hải, Phạm Phị Tuyết Ngân & Vũ Ngọc Út (2020). Đánh giá hoạt tính của vi khuẩn Lactobacillus từ ruột tôm thẻ chân trắng có tiềm năng probiotic để bổ sung vào thức ăn tôm. Tạp chí Khoa học Trường Đại học Cần Thơ. 56(1): 102-111
Huynh T.G., Shiu Y.L., Nguyen T.P., Hien T.T.T. & Liu C.H. (2018). Effects of synbiotic containing Lactobacillus plantarum 7-40 and galactooligosaccharide on the growth performance of white shrimp, Litopenaeus vannamei. Aquaculture Research. 49: 2416-2428. https://doi.org/10.1111/are.13701.
Kneifel W. (2000). In vitro growth behaviour of probiotic bacteria in culture media with carbohydrates of prebiotic importance. Microbial Ecology in Health and Disease. 12(1): 27-34.
Kolida S. & Gibson G.R. (2011). Synbiotics in health and disease. Annual Review of Food Science and Technology. 2: 373-393
Lee J. & Gao Y. (2012). Review of the application of garlic, Allium sativum, in aquaculture. J World Aquac Soc. 43: 447-458.
Liévin-Le Moal V. & Servin A.L. (2014). Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clinical Microbiology Reviews. 27(2): 167-199.
Ljungh A. & Wadstrom T. (2006). Lactic acid bacteria as probiotics. Current Issues in Intestinal Microbiology. 7(2): 73-90.
Lopes S.M.S, Francisco M.G, Higashi B, de Almeida R.T.R, Krausová G, Pilau E.J, Goncalves J.E, Goncalves R.A.C. & de Oliveira A.J.B. (2016). Chemical characterization and prebiotic activity of fructooligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures. Carbohydrate Polymers. 152: 718-725.
Lowry O.H., Rosebrough N.J., Farr A.L. & Randall R.J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry. 193(1): 265-275. http//doi:10.1016/s0021-9258(19)52451-6.
Lu X., Li N., Zhao R., Zhao M., Cui X., Xu Y. & Qiao X. (2021). In vitro prebiotic properties of garlic polysaccharides and its oligosaccharide mixtures obtained by acid hydrolysis. Frontiers in Nutrition. 8: 798450.
Miron T., Shin I., Feigenblat G., Weiner L., Mirelman D., Wilchek M., Rabinkov A. (2002). A spectrophotometric assay for allicin, alliin, and alliinase (alliin lyase) with a chromogenic thiol: reaction of 4-mercaptopyridine with thiosulfinates. Analytical Biochemistry. 307(1): 76-83.
Mohammed A., Aslamyah S., Zainuddin & Djawad M.I. (2024). In vitro evaluation of synbiotics combinations of different inulin concentrations and multi-strains probiotics based on microbial growth and digestive enzymes production. Biodiversitas. 25(10): 3693-3702.
Ng Z.X. & See A.N. (2018). Effect of in vitro digestion on the total polyphenol and flavonoid, antioxidant activity and carbohydrate hydrolyzing enzymes inhibitory potential of selected functional plant-based foods. Journal of food processing and preservation. 43(4): 1-13.
Phan T.C.T., Nguyen T.K.L., Pham T.T.N., Truong Q.P., Huynh T.G. & Tran T.T.H. (2025). Synbiotic effects of Lactobacillus plantarum CMT1 and Morinda citrifolia on the growth performance and disease resistance of whiteleg shrimp. Comparative Biochemistry and Physiology, Part B. 275: 111037. doi.org/10.1016/j.cbpb.2024.111037.
Rana A., Taneja N.K., Raposo A., Alarifi S.N., Teixeira-Lemos E., Lima M.J., Gonçalves J.C. & Dhewa T. (2024). Exploring prebiotic properties and its probiotic potential of new formulations of soy milk-derived beverages. Frontiers in Microbiology. 15:1404907.
Ringø E., Hoseinifar S.H., Ghosh K., Doan H.V., Beck B.R. & Song S.K. (2018). Lactic acid bacteria in finfish-an update. Frontiers in Microbiology. 9: 1-37.
Rusdi V.B. & Yuniarni U. (2024). Prebiotic activity of Ambon banana (Musa acuminata (AAA Group) ‘Ambon’) peel starch against Lactobacillus acidophilus and Escherichia coli In. AIP Conference Proceedings. 3065: 1.
Saxena R.K., Dutt K., Agarwal L. & Nayyar P. (2007). A highly thermostable and alkaline amylase from a Bacillus sp. PN5. Bioresource Techonology. 98(2): 260-265
Shang A., Cao S.Y., Xu X.Y., Gan R.Y., Tang G.Y., Corke H., Mavumengwana V. & Li H.B. (2019). Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods. 8(7): 246.
Sulthoniyah S.T.M., Hardoko & Nursyam H. (2015). Characterization of extracellular protease lactic acid bacteria from shrimp paste. Journal of Life Science and Biomedicine. 5: 01-05.
Sunu P., Sunarti D., Mahfudz L.D. & Yunianto W.D. (2019). Prebiotic activity of garlic (Allium sativum) extract on Lactobacillus acidophilus. Veterinary World. 12(12): 2046-2051.
Tazikeh T., Abedian Kenari A., Esmaeili M. (2020). Effects of fish meal replacement by meat and bone meal supplemented with garlic (Allium sativum) powder on biological indices, feeding, muscle composition, fatty acid and amino acid profiles of whiteleg shrimp (Litopenaeus vannamei). Aquaculture Research. 51: 674-686. https://doi.org/10.1111/are.14416.
Tu P.T.C., Thu N.T., Lien N.T.K., Giang H.T. & Hien T.T.T. (2024). Isolation of Lactobacillus plantarum CMT1 from shrimp intestine and its effects on growth and survival of the whiteleg shrimp, Litopeneaus vannamei. Israeli Journal of Aquaculture - Bamidgeh. 76(2): 215-222.
Zhang Y., Li L., Ma X., Liu R., Shi R., Zhao D., Li X. (2024). Extraction, purification, structural features, modifications, bioactivities, structure-activity relationships, and applications of polysaccharides from garlic: A review. International Journal of Biological Macromolecules. 265. https://doi.org/10.1016/j.ijbiomac.2024.131165.
Zhao X., Zhong X., Liu X., Wang X. & Gao X. (2021). Therapeutic and improving function of lactobacilli in the prevention and treatment of cardiovascular-related diseases: a novel perspective from gut microbiota. In Frontiers in Nutrition. 8. https://www.frontiersin.org/articles/10.3389/fnut. 2021.693412.