Isolation of Broad-Spectrum Antifungal Bacteria against Phytopathogenic Fungi

Date Received: 07-02-2025

Date Published: 21-02-2025

Views

8

Downloads

9

Section:

KỸ THUẬT VÀ CÔNG NGHỆ

How to Cite:

Hien, P., Yen, T., & Tam, D. (2025). Isolation of Broad-Spectrum Antifungal Bacteria against Phytopathogenic Fungi. Vietnam Journal of Agricultural Sciences, 22(9). https://doi.org/10.1234/s7345s51

Isolation of Broad-Spectrum Antifungal Bacteria against Phytopathogenic Fungi

Pham Hong Hien , Tran Thi Bao Yen , Dang Thi Thanh Tam (*)

  • Tác giả liên hệ: thanhtam@vnua.edu.vn
  • Keywords

    Bacillus sp, Fusarium solani, Fusarium oxysporum, Alternaria alternata

    Abstract


    The research aimed to identify potential antifungal bacteria against phytopathogenic fungi. From rhizosphere soil samples, 43 bacterial isolates were collected and screened. The results indicated that there were three strains with strong antifungal activity against fungal phytopathogens, including Fusarium solani, Fusarium oxysporum, and Alternaria alternata. In addition, the biological characteristics of three potential bacterial strains were evaluated. Based on analysis of 16S rRNA sequence and specific genes, all three bacterial strains were identified and named as Bacillus sp. TV1.1, B. amyloliquefaciens TV2.5, and B. subtilis TV2.12. The results indicate that all three antagonistic bacterial strains could be potential biocontrol agents to control fungal diseases in plants.

    References

    Bardin M., Ajouz S., Comby M., Lopez-Ferber M., Graillot B., Siegwart M. & Nicot P.C. (2015). Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Frontiers in Plant Science. 6.

    Borshchevskaya L.N., Kalinina A.N. & Sineokii S.P. (2013). Design of a PCR test based on the gyrA gene sequence for the identification of closely related species of the Bacillus subtilis

    group. Applied Biochemistry and Microbiology. 49: 646-655.

    Chakraborty S., Islam T. & Mahapatra S. (2022). Antifungal Compounds of Plant Growth-Promoting Bacillus Species. In: Antifungal Metabolites of Rhizobacteria for Sustainable Agriculture. Sayyed R. Z., Singh A. & Ilyas N. (eds.). Springer International Publishing Cham.

    pp. 135-155.

    Chatterjee S., Kuang Y., Splivallo R., Chatterjee P. & Karlovsky P. (2016). Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: fungal biomass, diversity of secreted metabolites

    and fumonisin production. BMC Microbiology. 16(1): 83.

    Choudhary D.K. & Johri B.N. (2009). Interactions of Bacillus spp. and plants - With special reference to induced systemic resistance (ISR). Microbiological Research. 164(5): 493-513.

    Coleman J. J. (2016). The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Molecular Plant Pathology.

    (2): 146-158.

    Demers M. (2022). Alternaria alternata as endophyte and pathogen. Microbiology (Reading). 168(3).

    Edel-Hermann V. & Lecomte C. (2018). Current Status of Fusarium oxysporum Formae Speciales and Races. Phytopathology®. 109(4): 512-530.

    El-Baky N. A. & Amara A. (2021). Recent Approaches towards Control of Fungal Diseases in Plants: An Updated Review. J Fungi (Basel). 7(11).

    Farhad M.-A., Leila J., Reza K. N. & Ali A. (2016). A Simple and Rapid System for DNA and RNA Isolation from Diverse Plants Using Handmade Kit. Research square. doi. 10.21203/rs.2.1347/v2.

    Fira D., Dimkić I., Berić T., Lozo J. & Stanković S. (2018). Biological control of plant pathogens by Bacillus species. Journal of Biotechnology.

    : 44-55.

    Gwiazdowski R., Kubiak K., Juś K., Marchwińska K. & Gwiazdowska D. (2024). The Biocontrol of Plant Pathogenic Fungi by Selected Lactic Acid Bacteria: From Laboratory to Field Study. Agriculture. 14(1): 61.

    Herlina L., Pukan K. & Mustikaningtyas D. (2017). The endophytic bacteria producing IAA (Indole Acetic Acid) in Arachis hypogaea. Cell Biology and Development. 1: 31-35.

    Kim P., Ryu J., Kim Y. & Chi Y.-T. (2010). Production of Biosurfactant Lipopeptides Iturin A, Fengycin, and Surfactin A from Bacillus subtilis CMB32 for Control of Colletotrichum gloeosporioides. Journal of Microbiology and Biotechnology. 20: 138-45.

    Li P., Tedersoo L., Crowther T. W., Wang B., Shi Y., Kuang L., Li T., Wu M., Liu M., Luan L., Liu J., Li D., Li Y., Wang S., Saleem M., Dumbrell A. J., Li Z. & Jiang J. (2023). Global diversity and biogeography of potential phytopathogenic fungi in a changing world. Nature Communications.

    (1): 6482.

    Milijasevic-Marcic S., Todorovic V., Stanojevic O., Berić T., Stanković S., Todorovic B. P. & Potocnik I. (2018). Antagonistic potential of Bacillus spp. isolates against bacterial pathogens of tomato and fungal pathogen of pepper. Pesticidi I Fitomedicina. 33: 9-18.

    Rasul F., Afroz A., Rashid U., Mehmood S., Sughra K. & Zeeshan N. (2015). Screening and characterization of cellulase producing bacteria from soil and waste (molasses) of sugar industry International Journal of Biosciences. 6: 230-238.

    Thi Thanh Dang T., Thi Thanh Nguyen M., Thi Nguyen T., Hong Pham H., Tran V.-T., Tran D.T. & Nguyen C.X. (2024). Characterisation of Streptomyces sp. VNUA116 with strong antifungal activity against Fusarium oxysporum f.sp. cubense tropical race 4. Archives of Phytopathology and Plant Protection. 57(4): 315-330.