Date Received: 01-01-2026
Date Accepted: 30-12-2025
Date Published: 23-01-2026
##submissions.doi##: https://doi.org/10.31817/tckhnnvn.2026.24.1.07
Views
Downloads
Section:
How to Cite:
Isolation and Selection of Bacillus amyloliquefaciens Strains Antagonistic Against Salmonella gallinarum
Keywords
Probiotics, antimicrobial resistance, salmonellosis
Abstract
Probiotics are one of the most popular alternatives to antibiotics for disease prevention and growth promotion in livestock. Bacillus amyloliquefaciens (B. amyloliquefaciens) possesses several characteristics suitable for probiotics, including resistance to high temperatures, low pH, bile salts, and antagonism against pathogens. This study was conducted to isolate and select B. amyloliquefaciens strains antagonistic against Salmonella gallinarum (S. gallinarum), which causes Salmonellosis. The result showed that four B. amyloliquefaciens strains were isolated and identified from 100 fresh fecal samples of healthy chickens using the culture methods and Matrix-Assisted Laser Desorption/Ionization - Time-of-Flight (MALDI-TOF) technology. The isolates were not hemolytic on blood agar and exhibited high stability in adverse conditions (pH 3.0 and 0.3% bile salt), with a survival rate greater than 80%. The results of the antimicrobial susceptibility test revealed that all 4/4 (100%) of the B. amyloliquefaciens isolates were resistant to tetracycline and 3/4 (75%) were resistant to erythromycin. The isolates also exhibited strong antagonism against S. gallinarum in vitro, producing inhibition zones with diameters greater > 16 mm.
References
Abriouel H., Franz C.M.A. Omar P., Ben N. & Galvez A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews. 35(1): 201-232.
Afrin S. & Bhuiyan M.N.I. (2019). Antagonistic activity of Bacillus amyloliquefaciens subsp. amyloliquefaciens against multidrug resistant Serratia rubidaea. Current Research in Microbial Sciences. 5: 818054.
Ahmed S.T., Islam M.M., Mun H.S., Sim H.J., Kim Y.J. & Yang C.J. (2014). Effects of Bacillus amyloliquefaciens as a probiotic strain on growth performance, cecal microflora, and fecal noxious gas emissions of broiler chickens. Poultry Science, 93(8): 1963-1971.
Aikun Fu, Qiufen Mo, Yanping Wu, Baikui Wang, Rongrong Liu, Li Tang, Zhonghua Zeng, Xiaoping Zhang & Weifen Li (2019). Protective effect of Bacillus amyloliquefaciens against Salmonella via polarizing macrophages to M1 phenotype directly and to M2 depended on microbiota. Food and Function. 10(12): 7653-7666.
Baharudin M.M.A.A., Ngalimat M.S., Shariff F.M., Yusof Z.N.B., Karim M., Baharum S.N. & Sabri S. (2021). Antimicrobial activities of Bacillus velezensis strains isolated from stingless bee products against methicillin-resistant Staphylococcus aureus. PLoS ONE. 16(5): e0251514.
Barrow P.A. & Freitas Neto O.C. (2011). Pullorum disease and fowl typhoid-new thoughts on old diseases: A review. Avian Pathology. 40 (1): 1465-3338.
Boottanun P., Potisap C., Hurdle J.G. & Sermswan R.W. (2017). Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei. AMB Express. 7(1): 1-11.
Chang X., Wu Z., Wu S., Dai Y. & Sun C. (2015). Degradation of ochratoxin A by Bacillus amyloliquefaciens ASAG1. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment. 32(4): 564-571.
CLSI (2015). M45| Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. 3rd Edition.
Das B.K., Nidhi R.G.N., Roy P., Muduli A.K., Swain P., Mishra S.S. & Jayasankar P. (2014). Antagonistic activity of cellular components of Bacillus subtilis AN11 against bacterial pathogens. In Int. J. Curr. Microbiol. App. Sci. 3(5): 795-809.
Du H., Yao W., Fakhar-E- M., Kulyar A., Ding Y., Zhu H., Pan H., Li K., Bhutta Z.A., Liu S. & Li J. (2022). Effects of Bacillus amyloliquefaciens TL106 Isolated from Tibetan Pigs on Probiotic Potential and Intestinal Microbes in Weaned Piglets. Microbiology Spectrum. 10(1): e01205-21.
EFSA (2012). Guidance on the assessment of bacterialsusceptibility to antimicrobials of human and veterinaryimportance. EFSA Journal. 10(6): 2740.
EFSA (2014). Guidance on the assessment of the toxigenic potential of Bacillus species used in animal nutrition. EFSA Journal. 12(5): 1-10.
Ezema W.S., Onuoha E. & Chah K.F. (2009). Observations on an outbreak of fowl typhoid in commercial laying birds in Udi, South Eastern Nigeria. Comparative Clinical Pathology. 18(4): 395-398.
Farahani R.K., Ebrahimi-Rad M., Shahrokhi N., Farahani A.H.K., Ghafouri S.A., Rezaei M., Gharibzadeh S., Langeroudi A.G. & Ehsani P. (2023). High prevalence of antibiotic resistance and biofilm formation in Salmonella Gallinarum. Iranian Journal of Microbiology, 15(5): 631.
Golnari M., Bahrami N., Milanian Z., Rabbani Khorasgani M., Asadollahi M.A., Shafiei R. & Fatemi S.S.A. (2024). Isolation and characterization of novel Bacillus strains with superior probiotic potential: comparative analysis and safety evaluation. Scientific Reports. 14(1): 1457.
Gracia M.I., Araníbar M.J., Lázaro R., Medel P. & Mateos G.G. (2003). Alpha-amylase supplementation of broiler diets based on corn. Poultry Science. 82(3): 436-442.
Haque M.A., Wang F., Chen Y., Hossen F., Islam M.A., Hossain M.A., Siddique N., He C. & Ahmed F. (2022). Bacillus spp. Contamination: A Novel Risk Originated From Animal Feed to Human Food Chains in South-Eastern Bangladesh. Frontiers in Microbiology. 12: 783103.
Ismat Jahan Anee, Shamimul Alam, Rowshan Ara Begum, Reza Md Shahjahan & Ashfaqul Muid Khandaker (2021). The role of probiotics on animal health and nutrition. The Journal of Basic and Applied Zoology. 82: 52.
Ji J., Hu S. & Li W. (2013). Probiotic Bacillus amyloliquefaciens SC06 Prevents Bacterial Translocation in Weaned Mice. Indian Journal of Microbiology. 53(3): 323-328.
Jini R., Swapna H.C., Rai A.K., Vrinda R., Halami P.M., Sachindra N.M. & Bhaskar N. (2011). Isolation and characterization of potential lactic acid bacteria (LAB) from freshwater fish processing wastes for application in fermentative utilisation of fish processing waste. Brazilian Journal of Microbiology. 42(4): 1516-1525.
Lê Lưu Phương Hạnh, Nguyễn Hoàng Chi Mai, Trần Ngọc Phương Linh, Lê Văn Hậu, Nguyễn Đăng Quân & Ngô Huỳnh Phương Thảo (2021). Hoạt động đối kháng của chủng Bacillus amyloliquefaciens B894 với vi khuẩn Edwardsiella ictaluri và Aeromonas hydrophila. Tạp chí Khoa học và Công nghệ Nông nghiệp Việt Nam. 01(122): 113-119.
Lee Y.J., Kim B.K., Lee B.H., JoK.I., Lee N.K., Chung C.H., Lee Y.C. & Lee J.W. (2008). Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource Technology. 99(2): 378-386.
Lu H., Yang P., Zhong M., Bilal M., Xu H., Zhang Q., Xu J., Liang N., Liu S., Zhao L., Zhao Y. & Geng C. (2023). Isolation of a potential probiotic strain Bacillus amyloliquefaciens LPB-18 and identification of antimicrobial compounds responsible for inhibition of food-borne pathogens. Food Science and Nutrition. 11(5): 2186-2196.
Michael A. Jones, Paul Wigley, Kerrie L. Page, Scott D. Hulme & Paul A. Barrow. (2001). Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens. Infection and Immunity. 69(9): 5471-5476.
Mingmongkolchai S. & Panbangred W. (2018). Bacillus probiotics: an alternative to antibiotics for livestock production. Journal of Applied Microbiology. 124(6): 1334-1346.
Nguyễn Duy Linh, Nguyễn Phạm Ánh Dương, Lê Phương Uyển Nhi, Lê Hữu Ngọc, Đường Chi Mai & Lê Thanh Hiền (2025). Tiềm năng probiotic và khả năng kháng Escherichia coli, Salmonella của vi khuẩn Bacillus amyloliquefaciens. Tạp chí Nông nghiệp và Phát triển. 24(4): 54-65.
Nguyen H.A., Dam H.T., Van Nguyen H., Le T.H., Ho P.H. & Huong N.L. (2024). Whole genome sequence analysis of Bacillus amyloliquefaciens strain S2. 5 as a potential probiotic for feed supplement in livestock production. Journal of Genetic Engineering and Biotechnology. 22(3): 100404.
OIE (2023). Fowl typhoid. World Organisation for Animal Health.
Ritter A.C., Paula A., Correa F. Fonseca Veras F. & Brandelli A. (2018). Characterization of Bacillus subtilis Available as Probiotics. Journal of Microbiology Research. 8(2): 23-32.
Rodrigues Alves L.B., Freitas Neto O.C. de, Saraiva M. de M.S., do Monte D.F.M., de Lima B.N., Cabrera J.M., Barbosa F. de O., Benevides V.P., de Lima T.S., Campos I.C., Rubio M. da S., Nascimento C. de F., Arantes L.C.R.V., Alves V.V., de Almeida A.M., Olsen J.E. & Berchieri Junior A. (2024). Salmonella Gallinarum mgtC mutant shows a delayed fowl typhoid progression in chicken. Gene. 892: 147827.
Shehata M.G., El Sohaimy S.A., El-Sahn M.A, & Youssef M.M. (2016). Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Annals of Agricultural Sciences. 61(1): 65-75.
Shubham Gupta, Upasana Mohanty & Ranendra K. Majumdar (2021). Isolation and characterization of lactic acid bacteria from traditional fermented fish product Shidal of India with reference to their probiotic potential. LWT. 146: 111641.
Siahmoshteh F., Siciliano I., Banani H., Hamidi-Esfahani Z., Razzaghi-Abyaneh M., Gullino M.L. & Spadaro D. (2017). Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in the control of Aspergillus parasiticus growth and aflatoxins production on pistachio. International Journal of Food Microbiology, 254: 47-53.
Zulkhairi Amin F.A., Sabri S., Ismail M., Chan K.W., Ismail N., Mohd Esa N., Mohd Lila M.A. & Zawawi N. (2019). Probiotic Properties of Bacillus Strains Isolated from Stingless Bee (Heterotrigona itama) Honey Collected across Malaysia. International Journal of Environmental Research and Public Health. 17(1): 278.